Papers
Topics
Authors
Recent
2000 character limit reached

Best Subset Solution Path for Linear Dimension Reduction Models using Continuous Optimization

Published 29 Mar 2024 in stat.ME, stat.CO, and stat.OT | (2403.20007v1)

Abstract: The selection of best variables is a challenging problem in supervised and unsupervised learning, especially in high dimensional contexts where the number of variables is usually much larger than the number of observations. In this paper, we focus on two multivariate statistical methods: principal components analysis and partial least squares. Both approaches are popular linear dimension-reduction methods with numerous applications in several fields including in genomics, biology, environmental science, and engineering. In particular, these approaches build principal components, new variables that are combinations of all the original variables. A main drawback of principal components is the difficulty to interpret them when the number of variables is large. To define principal components from the most relevant variables, we propose to cast the best subset solution path method into principal component analysis and partial least square frameworks. We offer a new alternative by exploiting a continuous optimization algorithm for best subset solution path. Empirical studies show the efficacy of our approach for providing the best subset solution path. The usage of our algorithm is further exposed through the analysis of two real datasets. The first dataset is analyzed using the principle component analysis while the analysis of the second dataset is based on partial least square framework.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.