Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Online Feedback Optimization over Networks: A Distributed Model-free Approach (2403.19834v2)

Published 28 Mar 2024 in math.OC

Abstract: Online feedback optimization (OFO) enables optimal steady-state operations of a physical system by employing an iterative optimization algorithm as a dynamic feedback controller. When the plant consists of several interconnected sub-systems, centralized implementations become impractical due to the heavy computational burden and the need to pre-compute system-wide sensitivities, which may not be easily accessible in practice. Motivated by these challenges, we develop a fully distributed model-free OFO controller, featuring consensus-based tracking of the global objective value and local iterative (projected) updates that use stochastic gradient estimates. We characterize how the closed-loop performance depends on the size of the network, the number of iterations, and the level of accuracy of consensus. Numerical simulations on a voltage control problem in a direct current power grid corroborate the theoretical findings.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. A. Hauswirth, Z. He, S. Bolognani, G. Hug, and F. Dörfler, “Optimization algorithms as robust feedback controllers,” Annual Reviews in Control, vol. 57, p. 100941, 2024.
  2. A. Simonetto, E. Dall’Anese, S. Paternain, G. Leus, and G. B. Giannakis, “Time-varying convex optimization: Time-structured algorithms and applications,” Proceedings of the IEEE, vol. 108, no. 11, pp. 2032–2048, 2020.
  3. D. Krishnamoorthy and S. Skogestad, “Real-time optimization as a feedback control problem-A review,” Computers & Chemical Engineering, p. 107723, 2022.
  4. J. W. Simpson-Porco, “Analysis and synthesis of low-gain integral controllers for nonlinear systems,” IEEE Transactions on Automatic Control, vol. 66, no. 9, pp. 4148–4159, 2021.
  5. A. Hauswirth, F. Dörfler, and A. Teel, “Anti-windup approximations of oblique projected dynamics for feedback-based optimization,” arXiv preprint arXiv:2003.00478, 2020.
  6. A. Hauswirth, S. Bolognani, G. Hug, and F. Dörfler, “Timescale separation in autonomous optimization,” IEEE Transactions on Automatic Control, vol. 66, no. 2, pp. 611–624, 2021.
  7. V. Häberle, A. Hauswirth, L. Ortmann, S. Bolognani, and F. Dörfler, “Non-convex feedback optimization with input and output constraints,” IEEE Control Systems Letters, vol. 5, no. 1, pp. 343–348, 2021.
  8. G. Belgioioso, D. Liao-McPherson, M. H. de Badyn, S. Bolognani, R. S. Smith, J. Lygeros, and F. Dörfler, “Online feedback equilibrium seeking,” arXiv preprint arXiv:2210.12088, 2022.
  9. Z. He, S. Bolognani, J. He, F. Dörfler, and X. Guan, “Model-free nonlinear feedback optimization,” IEEE Transactions on Automatic Control, pp. 1–16, 2023.
  10. G. Bianchin, J. Cortés, J. I. Poveda, and E. Dall’Anese, “Time-varying optimization of LTI systems via projected primal-dual gradient flows,” IEEE Transactions on Control of Network Systems, vol. 9, no. 1, pp. 474–486, 2021.
  11. A. Bernstein, E. Dall’Anese, and A. Simonetto, “Online primal-dual methods with measurement feedback for time-varying convex optimization,” IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 1978–1991, 2019.
  12. L. S. P. Lawrence, J. W. Simpson-Porco, and E. Mallada, “Linear-convex optimal steady-state control,” IEEE Transactions on Automatic Control, vol. 66, no. 11, pp. 5377–5384, 2021.
  13. M. Colombino, E. Dall’Anese, and A. Bernstein, “Online optimization as a feedback controller: Stability and tracking,” IEEE Transactions on Control of Network Systems, vol. 7, pp. 422–432, 2020.
  14. L. Ortmann, C. Rubin, A. Scozzafava, J. Lehmann, S. Bolognani, and F. Dörfler, “Deployment of an online feedback optimization controller for reactive power flow optimization in a distribution grid,” in IEEE PES ISGT Europe, 2023.
  15. A. Nedic, A. Olshevsky, and M. G. Rabbat, “Network topology and communication computation tradeoffs in decentralized optimization,” Proceedings of the IEEE, vol. 106, no. 5, pp. 953–976, 2018.
  16. W. Wang, Z. He, G. Belgioioso, S. Bolognani, and F. Dörfler, “Decentralized feedback optimization via sensitivity decoupling: Stability and sub-optimality,” in 2024 European Control Conference, accepted.
  17. G. Belgioioso, S. Bolognani, G. Pejrani, and F. Dörfler, “Tutorial on congestion control in multi-area transmission grids via online feedback equilibrium seeking,” in 62nd IEEE Conference on Decision and Control, 2023, pp. 3995–4002.
  18. C.-Y. Chang, M. Colombino, J. Corté, and E. Dall’Anese, “Saddle-flow dynamics for distributed feedback-based optimization,” IEEE Control Systems Letters, vol. 3, no. 4, pp. 948–953, 2019.
  19. A. Bernstein and E. Dall’Anese, “Real-time feedback-based optimization of distribution grids: A unified approach,” IEEE Transactions on Control of Network Systems, vol. 6, no. 3, pp. 1197–1209, 2019.
  20. X. Zhang, A. Papachristodoulou, and N. Li, “Distributed control for reaching optimal steady state in network systems: An optimization approach,” IEEE Transactions on Automatic Control, vol. 63, no. 3, pp. 864–871, 2018.
  21. J. I. Poveda and A. R. Teel, “A robust event-triggered approach for fast sampled-data extremization and learning,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 4949–4964, 2017.
  22. Y. Chen, A. Bernstein, A. Devraj, and S. Meyn, “Model-free primal-dual methods for network optimization with application to real-time optimal power flow,” in American Control Conference, 2020, pp. 3140–3147.
  23. X. Chen, J. I. Poveda, and N. Li, “Safe model-free optimal voltage control via continuous-time zeroth-order methods,” in 60th IEEE Conference on Decision and Control, 2021, pp. 4064–4070.
  24. Y. Nesterov and V. Spokoiny, “Random gradient-free minimization of convex functions,” Foundations of Computational Mathematics, vol. 17, pp. 527–566, 2017.
  25. Y. Zhang, Y. Zhou, K. Ji, and M. M. Zavlanos, “A new one-point residual-feedback oracle for black-box learning and control,” Automatica, vol. 136, p. 110006, 2022.
  26. X. Chen, Y. Tang, and N. Li, “Improve single-point zeroth-order optimization using high-pass and low-pass filters,” in International Conference on Machine Learning, 2022, pp. 3603–3620.
  27. Y. Tang, Z. Ren, and N. Li, “Zeroth-order feedback optimization for cooperative multi-agent systems,” Automatica, vol. 148, p. 110741, 2023.
  28. A. Maritan and L. Schenato, “ZO-JADE: Zeroth-order curvature-aware distributed multi-agent convex optimization,” IEEE Control Systems Letters, vol. 7, pp. 1813–1818, 2023.
  29. O. Shamir, “An optimal algorithm for bandit and zero-order convex optimization with two-point feedback,” The Journal of Machine Learning Research, vol. 18, no. 1, pp. 1703–1713, 2017.
  30. Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for nonconvex multiagent optimization,” IEEE Transactions on Control of Network Systems, vol. 8, no. 1, pp. 269–281, 2020.
  31. R. Dixit, A. S. Bedi, R. Tripathi, and K. Rajawat, “Online learning with inexact proximal online gradient descent algorithms,” IEEE Transactions on Signal Processing, vol. 67, no. 5, pp. 1338–1352, 2019.
  32. J. Zhao and F. Dörfler, “Distributed control and optimization in DC microgrids,” Automatica, vol. 61, pp. 18–26, 2015.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube