Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Superintegrability of the monomial Uglov matrix model (2403.19538v2)

Published 28 Mar 2024 in hep-th, math-ph, and math.MP

Abstract: In this paper we propose a resolution to the problem of $\beta$-deforming the non-Gaussian monomial matrix models. The naive guess of substituting Schur polynomials with Jack polynomials does not work in that case, therefore, we are forced to look for another basis for superintegrability. We find that the relevant symmetric functions are given by Uglov polynomials, and that the integration measure should also be deformed. The measure appears to be related to the Uglov limit as well, when the quantum parameters $(q,t)$ go to a root of unity. The degree of the root must be equal to the degree of the potential. One cannot derive these results directly, for example, by studying Virasoro constraints. Instead, we use the recently developed techniques of $W$-operators to arrive at the root of unity limit. From the perspective of matrix models this new example demonstrates that even with a rather nontrivial integration measure one can find a superintegrability basis by studying the hidden symmetry of the moduli space of deformations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. A. Morozov, “Integrability and matrix models,” Phys. Usp. 37 (1994) 1–55, arXiv:hep-th/9303139.
  2. P. J. Forrester, Log-gases and random matrices (LMS-34). Princeton university press, 2010.
  3. V. A. Kazakov, A. A. Migdal, and I. K. Kostov, “Critical Properties of Randomly Triangulated Planar Random Surfaces,” Phys. Lett. B 157 (1985) 295–300.
  4. E. Brezin and V. A. Kazakov, “Exactly Solvable Field Theories of Closed Strings,” Phys. Lett. B 236 (1990) 144–150.
  5. D. J. Gross and A. A. Migdal, “Nonperturbative Two-Dimensional Quantum Gravity,” Phys. Rev. Lett. 64 (1990) 127.
  6. V. Pestun et al., “Localization techniques in quantum field theories,” J. Phys. A 50 no. 44, (2017) 440301, arXiv:1608.02952 [hep-th].
  7. A. Mironov, “Integrability in string / field theories and Hamiltonian flows in the space of physical systems,” Theor. Math. Phys. 135 (2003) 814–827, arXiv:hep-th/0205202.
  8. S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, and A. Zabrodin, “Matrix models among integrable theories: Forced hierarchies and operator formalism,” Nucl. Phys. B 366 (1991) 569–601.
  9. A. Mironov and A. Morozov, “On the complete perturbative solution of one-matrix models,” Phys. Lett. B 771 (2017) 503–507, arXiv:1705.00976 [hep-th].
  10. A. Mironov and A. Morozov, “Superintegrability summary,” Phys. Lett. B 835 (2022) 137573, arXiv:2201.12917 [hep-th].
  11. A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model,” Eur. Phys. J. C 81 no. 3, (2021) 270, arXiv:2011.12917 [hep-th].
  12. A. Mironov and A. Morozov, “Bilinear character correlators in superintegrable theory,” Eur. Phys. J. C 83 no. 1, (2023) 71, arXiv:2206.02045 [hep-th].
  13. L. Cassia, R. Lodin, and M. Zabzine, “On matrix models and their q𝑞qitalic_q-deformations,” JHEP 10 (2020) 126, arXiv:2007.10354 [hep-th].
  14. A. Mironov, A. Morozov, A. Popolitov, and S. Shakirov, “Summing up perturbation series around superintegrable point,” arXiv:2401.14392 [hep-th].
  15. R. Wang, F. Liu, M.-L. Li, and W.-Z. Zhao, “Supersymmetric partition function hierarchies and character expansions,” Eur. Phys. J. C 83 no. 9, (2023) 776, arXiv:2208.03671 [hep-th].
  16. A. Morozov, “Challenges of beta-deformation,” Theor. Math. Phys. 173 (2012) 1417–1437, arXiv:1201.4595 [hep-th].
  17. A. Gerasimov, S. Khoroshkin, D. Lebedev, A. Mironov, and A. Morozov, “Generalized Hirota equations and representation theory. 1. The case of S⁢L⁢(2)𝑆𝐿2SL(2)italic_S italic_L ( 2 ) and S⁢Lq⁢(2)𝑆subscript𝐿𝑞2SL_{q}(2)italic_S italic_L start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( 2 ),” Int. J. Mod. Phys. A 10 (1995) 2589–2614, arXiv:hep-th/9405011.
  18. A. Mironov, V. Mishnyakov, and A. Morozov, “Tau-functions beyond the group elements,” Nucl. Phys. B 1001 (2024) 116504, arXiv:2312.00695 [hep-th].
  19. A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, and W.-Z. Zhao, “On KP-integrable skew Hurwitz τ𝜏\tauitalic_τ-functions and their β𝛽\betaitalic_β-deformations,” Phys. Lett. B 839 (2023) 137805, arXiv:2301.11877 [hep-th].
  20. F. Liu, A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, R. Wang, and W.-Z. Zhao, “(q,t)-deformed (skew) Hurwitz τ𝜏\tauitalic_τ-functions,” Nucl. Phys. B 993 (2023) 116283, arXiv:2303.00552 [hep-th].
  21. J.-E. Bourgine and A. Garbali, “A (q,t)𝑞𝑡(q,t)( italic_q , italic_t )deformation of the 2d Toda integrable hierarchy,” arXiv:2308.16583 [math-ph].
  22. J. A. Harvey and G. W. Moore, “On the algebras of BPS states,” Commun. Math. Phys. 197 (1998) 489–519, arXiv:hep-th/9609017.
  23. W. Li and M. Yamazaki, “Quiver Yangian from Crystal Melting,” JHEP 11 (2020) 035, arXiv:2003.08909 [hep-th].
  24. D. Galakhov, A. Morozov, and N. Tselousov, “Towards the theory of Yangians,” arXiv:2311.00760 [hep-th].
  25. A. Tsymbaliuk, “The affine Yangian of 𝔤⁢𝔩1𝔤subscript𝔩1\mathfrak{gl}_{1}fraktur_g fraktur_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT revisited,” Adv. Math. 304 (2017) 583–645, arXiv:1404.5240 [math.RT].
  26. T. Procházka, “𝒲𝒲\mathcal{W}caligraphic_W -symmetry, topological vertex and affine Yangian,” JHEP 10 (2016) 077, arXiv:1512.07178 [hep-th].
  27. O. Schiffmann and E. Vasserot, “Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on A^2,” arXiv:1202.2756 [math.QA].
  28. A. Litvinov and I. Vilkoviskiy, “Liouville reflection operator, affine Yangian and Bethe ansatz,” JHEP 12 (2020) 100, arXiv:2007.00535 [hep-th].
  29. V. Mishnyakov and A. Oreshina, “Superintegrability in β𝛽\betaitalic_β-deformed Gaussian Hermitian matrix model from W-operators,” Eur. Phys. J. C 82 no. 6, (2022) 548, arXiv:2203.15675 [hep-th].
  30. A. Mironov, V. Mishnyakov, A. Morozov, and A. Popolitov, “Commutative families in W∞subscript𝑊W_{\infty}italic_W start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT, integrable many-body systems and hypergeometric τ𝜏\tauitalic_τ-functions,” JHEP 23 (2020) 065, arXiv:2306.06623 [hep-th].
  31. A. Mironov, V. Mishnyakov, A. Morozov, and A. Popolitov, “Commutative subalgebras from Serre relations,” Phys. Lett. B 845 (2023) 138122, arXiv:2307.01048 [hep-th].
  32. A. Mironov and A. Morozov, “Many-body integrable systems implied by WLZZ models,” Phys. Lett. B 842 (2023) 137964, arXiv:2303.05273 [hep-th].
  33. K. A. Muttalib, “Random matrix models with additional interactions,” Journal of Physics A: Mathematical and General 28 no. 5, (Mar, 1995) L159. https://dx.doi.org/10.1088/0305-4470/28/5/003.
  34. A. Borodin, “Biorthogonal ensembles,” Nuclear Physics B 536 no. 3, (1998) 704–732. https://www.sciencedirect.com/science/article/pii/S0550321398006427.
  35. P. J. Forrester and D. Wang, “Muttalib–Borodin ensembles in random matrix theory — realisations and correlation functions,” Electronic Journal of Probability 22 no. none, (2017) 1 – 43. https://doi.org/10.1214/17-EJP62.
  36. C. Cordova, B. Heidenreich, A. Popolitov, and S. Shakirov, “Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models,” Commun. Math. Phys. 361 no. 3, (2018) 1235–1274, arXiv:1611.03142 [hep-th].
  37. O. Khlaif and T. Kimura, “Virasoro constraint for Uglov matrix model,” JHEP 04 (2022) 029, arXiv:2201.06839 [hep-th].
  38. D. Uglov, “Yangian Gelfand-Zetlin bases, gl(N) Jack polynomials and computation of dynamical correlation functions in the spin Calogero-Sutherland model,” Commun. Math. Phys. 193 (1998) 663–696, arXiv:hep-th/9702020.
  39. M. Bershtein and A. Vargulevich, “NSR singular vectors from Uglov polynomials,” J. Math. Phys. 63 no. 6, (2022) 061706, arXiv:2202.11810 [math-ph].
  40. V. Belavin and A. Zhakenov, “AGT basis in SCFT for c = 3/2 and Uglov polynomials,” Nucl. Phys. B 958 (2020) 115133, arXiv:2005.12454 [hep-th].
  41. D. Galakhov, A. Morozov, and N. Tselousov, “Simple Representations of BPS Algebras: the case of Y⁢(𝔤⁢𝔩^2)𝑌subscript^𝔤𝔩2Y(\widehat{\mathfrak{gl}}_{2})italic_Y ( over^ start_ARG fraktur_g fraktur_l end_ARG start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ),” arXiv:2402.05920 [hep-th].
  42. E. Chistyakova, A. Litvinov, and P. Orlov, “Affine Yangian of 𝔤⁢𝔩𝔤𝔩\mathfrak{gl}fraktur_g fraktur_l(2) and integrable structures of superconformal field theory,” JHEP 03 (2022) 102, arXiv:2110.05870 [hep-th].
  43. T. Kimura, “β𝛽\betaitalic_β-ensembles for toric orbifold partition function,” Prog. Theor. Phys. 127 (2012) 271–285, arXiv:1109.0004 [hep-th].
  44. A. A. Belavin, M. A. Bershtein, B. L. Feigin, A. V. Litvinov, and G. M. Tarnopolsky, “Instanton moduli spaces and bases in coset conformal field theory,” Commun. Math. Phys. 319 (2013) 269–301, arXiv:1111.2803 [hep-th].
  45. T. Nishioka and Y. Tachikawa, “Central charges of para-Liouville and Toda theories from M-5-branes,” Phys. Rev. D 84 (2011) 046009, arXiv:1106.1172 [hep-th].
  46. H. Itoyama, T. Oota, and R. Yoshioka, “2d-4d Connection between q𝑞qitalic_q-Virasoro/W Block at Root of Unity Limit and Instanton Partition Function on ALE Space,” Nucl. Phys. B 877 (2013) 506–537, arXiv:1308.2068 [hep-th].
  47. K. Miki, “A (q,γ𝛾\gammaitalic_γ) analog of the W1+∞\infty∞ algebra,” J. Math. Phys. 48 no. 12, (2007) 123520.
  48. J. Ding, J.-t. Ding, and K. Iohara, “Generalization and deformation of Drinfeld quantum affine algebras,” Lett. Math. Phys. 41 (1997) 181–193, arXiv:q-alg/9608002.
  49. H. Itoyama, T. Oota, and R. Yoshioka, “q𝑞qitalic_q-Virasoro/W Algebra at Root of Unity and Parafermions,” Nucl. Phys. B 889 (2014) 25–35, arXiv:1408.4216 [hep-th].
  50. T. Kimura and V. Pestun, “Twisted reduction of quiver W-algebras,” arXiv:1905.03865 [hep-th].
  51. S. Corley, A. Jevicki, and S. Ramgoolam, “Exact correlators of giant gravitons from dual N=4 SYM theory,” Adv. Theor. Math. Phys. 5 (2002) 809–839, arXiv:hep-th/0111222.
  52. R. Wang, C.-H. Zhang, F.-H. Zhang, and W.-Z. Zhao, “CFT approach to constraint operators for (β𝛽\betaitalic_β-deformed) hermitian one-matrix models,” Nucl. Phys. B 985 (2022) 115989, arXiv:2203.14578 [hep-th].
  53. L. Cassia, R. Lodin, and M. Zabzine, “Virasoro Constraints Revisited,” Commun. Math. Phys. 387 no. 3, (2021) 1729–1755, arXiv:2102.05682 [hep-th].
  54. R. Dijkgraaf and C. Vafa, “A Perturbative window into nonperturbative physics,” arXiv:hep-th/0208048.
  55. A. S. Alexandrov, A. Mironov, and A. Morozov, “Partition functions of matrix models as the first special functions of string theory. 1. Finite size Hermitean one matrix model,” Int. J. Mod. Phys. A 19 (2004) 4127–4165, arXiv:hep-th/0310113.
  56. S. Barseghyan and A. Popolitov, “The “Null-A” superintegrability for monomial matrix models,” Annals Phys. 449 (2023) 169207, arXiv:2204.14074 [hep-th].
  57. I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford university press, 1998.
  58. A. Mironov and A. Morozov, “On the origin of Virasoro constraints in matrix models: Lagrangian approach,” Phys. Lett. B 252 (1990) 47–52.
  59. R. Dijkgraaf, H. L. Verlinde, and E. P. Verlinde, “Loop equations and Virasoro constraints in nonperturbative 2-D quantum gravity,” Nucl. Phys. B 348 (1991) 435–456.
  60. A. Mironov, V. Mishnyakov, A. Morozov, and R. Rashkov, “Virasoro Versus Superintegrability. Gaussian Hermitian Model,” JETP Lett. 113 no. 11, (2021) 728–732, arXiv:2104.11550 [hep-th].
  61. A. Morozov and S. Shakirov, “Generation of Matrix Models by W-operators,” JHEP 04 (2009) 064, arXiv:0902.2627 [hep-th].
  62. R. Wang, F. Liu, C.-H. Zhang, and W.-Z. Zhao, “Superintegrability for (β𝛽\betaitalic_β-deformed) partition function hierarchies with W-representations,” Eur. Phys. J. C 82 no. 10, (2022) 902, arXiv:2206.13038 [hep-th].
  63. A. Mironov, V. Mishnyakov, A. Morozov, A. Popolitov, R. Wang, and W.-Z. Zhao, “Interpolating matrix models for WLZZ series,” Eur. Phys. J. C 83 no. 5, (2023) 377, arXiv:2301.04107 [hep-th].
  64. Y. Zenkevich, “Generalized Macdonald polynomials, spectral duality for conformal blocks and AGT correspondence in five dimensions,” JHEP 05 (2015) 131, arXiv:1412.8592 [hep-th].
  65. A. Morozov, A. Popolitov, and S. Shakirov, “On (q,t)-deformation of Gaussian matrix model,” Phys. Lett. B 784 (2018) 342–344, arXiv:1803.11401 [hep-th].
  66. C. T. Chan, V. Mishnyakov, A. Popolitov, and K. Tsybikov, “On bilinear superintegrability for monomial matrix models in pure phase,” Eur. Phys. J. C 83 no. 12, (2023) 1145, arXiv:2310.02639 [hep-th].
  67. W. Fulton, Young tableaux: with applications to representation theory and geometry. No. 35. Cambridge University Press, 1997.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube