Papers
Topics
Authors
Recent
2000 character limit reached

Queued quantum collision models (2403.19408v2)

Published 28 Mar 2024 in quant-ph and cond-mat.stat-mech

Abstract: Collision models describe the sequential interactions of a system with independent ancillas. Motivated by recent advances in neutral atom arrays, in this Letter we investigate a model where the ancillas are governed by a classical controller that allows them to queue up while they wait for their turn to interact with the system. The ancillas can undergo individual open dynamics while they wait, which could cause them to, e.g., decohere. The system, which plays the role of the server in the queue, can also undergo its own open dynamics whenever it is idle. We show that this framework greatly generalizes existing approaches for quantum collision models, recovering the deterministic and stochastic formulations in the appropriate limits. Next, we show how the combination of queueing dynamics with quantum collisions introduces rich dynamical phenomena, including phase transitions and a sharp dependence on the queue statistics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. C. Gerry and P. Knight, Introductory Quantum Optics (Cambridge University Press, 2005).
  2. H. J. Carmichael, Physical Review Letters 70, 2273–2276 (1993).
  3. C. W. Gardiner, Physical Review Letters 70, 2269–2272 (1993).
  4. J. Rau, Physical Review 129, 1880–1888 (1963).
  5. M. Ziman and V. Bužek, Physical Review A 72 (2005), 10.1103/physreva.72.022110.
  6. S. Campbell and B. Vacchini, Europhysics Letters 133, 60001 (2021).
  7. G. De Chiara and M. Antezza, Physical Review Research 2 (2020), 10.1103/physrevresearch.2.033315.
  8. R. McCloskey and M. Paternostro, Physical Review A 89 (2014), 10.1103/physreva.89.052120.
  9. P. Strasberg, Physical Review E 100 (2019), 10.1103/physreve.100.022127.
  10. F. Barra, Scientific Reports 5 (2015), 10.1038/srep14873.
  11. F. Ciccarello, Quantum Measurements and Quantum Metrology 4 (2017), 10.1515/qmetro-2017-0007.
  12. L. Kleinrock, Queueing Systems, Volume I, A Wiley-Interscience publication No. v. 1 (Wiley, 1974).
  13. J. Cohen, The Single Server Queue, North-Holland series in applied mathematics and mechanics (North-Holland Publishing Company, 1969).
  14. D. V. Lindley, Proceedings of the Cambridge Philosophical Society 48, 277 (1952).
  15. See Supplemental Material for more details.
  16. A.-L. Barabási, Nature 435, 207–211 (2005).
  17. A. Vázquez, Physical Review Letters 95 (2005), 10.1103/physrevlett.95.248701.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 36 likes about this paper.