Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Certifying quantum enhancements in thermal machines beyond the Thermodynamic Uncertainty Relation (2403.19280v4)

Published 28 Mar 2024 in quant-ph and cond-mat.stat-mech

Abstract: Quantum coherence has been shown to impact the operational capabilities of quantum systems performing thermodynamic tasks in a significant way, and yet the possibility and conditions for genuine coherence-enhanced thermodynamic operation remain unclear. Introducing a comparison with classical machines using the same set of thermodynamic resources, we show that for steady-state quantum thermal machines -- both autonomous and externally driven -- that interact weakly with thermal reservoirs and work sources, the presence of coherence induced by perturbations in the machine Hamiltonian guarantees a genuine thermodynamic advantage under mild conditions. This advantage applies to both cases where the induced coherence is between levels with different energies or between degenerate levels. On the other hand, we show that engines subjected to noise-induced coherence can be outperformed by classical stochastic engines using exactly the same set of (incoherent) resources. We illustrate our results with three prototypical models of heat engines and refrigerators: the three-level amplifier, the three-qubit autonomous refrigerator, and a noise-induced-coherence machine.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. G. T. Landi and M. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021).
  2. H. E. D. Scovil and E. O. Schulz-DuBois, Three-level masers as heat engines, Phys. Rev. Lett. 2, 262 (1959).
  3. E. Geva and R. Kosloff, Three-level quantum amplifier as a heat engine: A study in finite-time thermodynamics, Phys. Rev. E 49, 3903 (1994).
  4. E. Boukobza and D. J. Tannor, Three-level systems as amplifiers and attenuators: A thermodynamic analysis, Phys. Rev. Lett. 98, 240601 (2007).
  5. N. Linden, S. Popescu, and P. Skrzypczyk, How small can thermal machines be? the smallest possible refrigerator, Phys. Rev. Lett. 105, 130401 (2010).
  6. A. Levy and R. Kosloff, Quantum absorption refrigerator, Phys. Rev. Lett. 108, 070604 (2012).
  7. N. M. Myers, O. Abah, and S. Deffner, Quantum thermodynamic devices: From theoretical proposals to experimental reality, AVS Quantum Science 4, 027101 (2022), https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0083192/16494008/027101_1_online.pdf .
  8. R. Kosloff and A. Levy, Quantum heat engines and refrigerators: Continuous devices, Annu. Rev. Phys. Chem. 65, 365 (2014).
  9. J. Um, K. E. Dorfman, and H. Park, Coherence-enhanced quantum-dot heat engine, Phys. Rev. Res. 4, L032034 (2022).
  10. A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, Phys. Rev. Lett. 114, 158101 (2015).
  11. J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16, 15 (2020).
  12. K. Ptaszyński, Coherence-enhanced constancy of a quantum thermoelectric generator, Phys. Rev. B 98, 085425 (2018).
  13. J. Liu and D. Segal, Thermodynamic uncertainty relation in quantum thermoelectric junctions, Phys. Rev. E 99, 062141 (2019).
  14. A. A. S. Kalaee, A. Wacker, and P. P. Potts, Violating the thermodynamic uncertainty relation in the three-level maser, Phys. Rev. E 104, L012103 (2021).
  15. G. Manzano and R. López, Quantum-enhanced performance in superconducting andreev reflection engines, Phys. Rev. Res. 5, 043041 (2023).
  16. L. F. Seoane and R. V. Solé, A multiobjective optimization approach to statistical mechanics, arXiv: Statistical Mechanics  (2013).
  17. L. Dinis, J. Unterberger, and D. Lacoste, Phase transitions in optimal betting strategies, Europhysics Letters 131, 60005 (2020).
  18. L. Dinis, J. Unterberger, and D. Lacoste, Pareto-optimal trade-off for phenotypic switching of populations in a stochastic environment, Journal of Statistical Mechanics: Theory and Experiment 2022, 053503 (2022).
  19. A. P. Solon and J. M. Horowitz, Phase transition in protocols minimizing work fluctuations, Phys. Rev. Lett. 120, 180605 (2018).
  20. H. J. D. Miller and M. Mehboudi, Geometry of work fluctuations versus efficiency in microscopic thermal machines, Phys. Rev. Lett. 125, 260602 (2020).
  21. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (OXFORD University Press, 2002).
  22. Ángel Rivas and S. F. Huelga, Open Quantum Systems. An introduction (Springer, 2012).
  23. A. S. Trushechkin and I. V. Volovich, Perturbative treatment of inter-site couplings in the local description of open quantum networks, Europhysics Letters 113, 30005 (2016).
  24. J. E. Geusic, E. O. Schulz-DuBios, and H. E. D. Scovil, Quantum equivalent of the carnot cycle, Phys. Rev. 156, 343 (1967).
  25. J. P. Palao, R. Kosloff, and J. M. Gordon, Quantum thermodynamic cooling cycle, Phys. Rev. E 64, 056130 (2001).
  26. E. D. Konstantin, X. Dazhi, and C. Jianshu, Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence., Phys. Rev. E 97 (2018).
  27. S. Varinder, Optimal operation of a three-level quantum heat engine and universal nature of efficiency., Phys. Rev. Research 2 (2020).
  28. S. Seah, S. Nimmrichter, and V. Scarani, Refrigeration beyond weak internal coupling, Phys. Rev. E 98, 012131 (2018).
  29. D. Venturelli, R. Fazio, and V. Giovannetti, Minimal self-contained quantum refrigeration machine based on four quantum dots, Phys. Rev. Lett. 110, 256801 (2013).
  30. M. O. Scully, Quantum photocell: Using quantum coherence to reduce radiative recombination and increase efficiency, Phys. Rev. Lett. 104, 207701 (2010).
  31. T. V. Tscherbul and P. Brumer, Long-lived quasistationary coherences in a v-type system driven by incoherent light., Phys. Rev. Lett. 113 (2014).
  32. U. Harbola, S. Rahav, and S. Mukamel, Quantum heat engines: A thermodynamic analysis of power and efficiency, Europhysics Letters 99, 50005 (2012).
  33. H. P. Goswami and U. Harbola, Thermodynamics of quantum heat engines, Phys. Rev. A 88, 013842 (2013).
  34. N. Killoran, S. F. Huelga, and M. B. Plenio, Enhancing light-harvesting power with coherent vibrational interactions: A quantum heat engine picture., J. Chem. Phys. 143 (2015).
  35. C.-P. S. Shan-He Su, S.-W. Li, and J.-C. Chen, Photoelectric converters with quantum coherence., Phys. Rev. E 93 (2016).
  36. V. Holubec and T. Novotný, Effects of noise-induced coherence on the performance of quantum absorption refrigerators., J. Low Temp. Phys. 192 (2018).
  37. J. Liu and D. Segal, Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators., Phys. Rev. E 151 (2021).
  38. V. Holubec and T. Novotný, Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators., J. Chem. Phys. 151 (2019).
  39. R. Alicki, The quantum open system as a model of the heat engine, Journal of Physics A: Mathematical and General 12, L103 (1979).
  40. G. Manzano, J. M. Horowitz, and J. M. R. Parrondo, Quantum fluctuation theorems for arbitrary environments: Adiabatic and nonadiabatic entropy production, Phys. Rev. X 8, 031037 (2018).
  41. G. Manzano and R. Zambrini, Quantum thermodynamics under continuous monitoring: A general framework, AVS Quantum Science 4, 025302 (2022).
  42. A. Hewgill, G. De Chiara, and A. Imparato, Quantum thermodynamically consistent local master equations, Phys. Rev. Res. 3, 013165 (2021).
  43. R. López, J. S. Lim, and K. W. Kim, Optimal superconducting hybrid machine, Phys. Rev. Res. 5, 013038 (2023).
  44. K. Hammam, G. Manzano, and G. De Chiara, Quantum coherence enables hybrid multitask and multisource regimes in autonomous thermal machines, Phys. Rev. Res. 6, 013310 (2024).
  45. E. Goodarzi, M. Ziaei, and E. Z. Hosseinipour, Introduction to Optimization Analysis in Hydrosystem Engineering (Springer International Publishing, 2014).
  46. P. P. Hofer, J.-R. Souquet, and A. A. Clerk, Quantum heat engine based on photon-assisted cooper pair tunneling, Phys. Rev. B 93, 041418 (2016b).
  47. G. Schaller, Open Quantum Systems Far from Equilibrium (Springer International Publishing, 2014).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.