Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Supernova Simulations (2403.18952v1)

Published 27 Mar 2024 in astro-ph.HE, astro-ph.SR, and gr-qc

Abstract: Magnetohydrodynamic simulations of core-collapse supernovae have become increasingly mature and important in recent years. Magnetic fields take center stage in scenarios for explaining hypernova explosions, but are now also considered in supernova theory more broadly as an important factor even in neutrino-driven explosions, especially in the context of neutron star birth properties. Here we present an overview of simulation approaches currently used for magnetohydrodynamic supernova simulations and sketch essential physical concepts for understanding the role of magnetic fields in supernovae of slowly or rapidly rotating massive stars. We review progress on simulations of neutrino-driven supernovae, magnetorotational supernovae, and the relevant field amplification processes. Recent results on the nucleosynthesis and gravitational wave emission from magnetorotational supernovae are also discussed. We highlight efforts to provide better initial conditions for magnetohydrodynamic supernova models by simulating short phases of the progenitor evolution in 3D to address uncertainties in the treatment of rotation and magnetic fields in current stellar evolution models.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. Begelman, M. C., Astrophys. J.  493, 291 (1998).
  2. Bethe, H. A., Rev. Mod. Phys. 62, 801 (1990).
  3. Bisnovatyi-Kogan, G. S., Astron. Zh.  47, 813 (1970).
  4. Cowling, T. G., Mon. Not. R. Astron.  Soc.  94, 39 (1933).
  5. Heng, I. S., Classical and Quantum Gravity 26, 105005 (2009).
  6. Janka, H.-T., Astron. Astrophys.  368, 527 (2001).
  7. Janka, H.-T., Annual Review of Nuclear and Particle Science 62, 407 (2012).
  8. Lee, D., Journal of Computational Physics 243, 269 (2013).
  9. Müller, B., Mon. Not. R. Astron.  Soc.  453, 287 (2015).
  10. Müller, B., Publ. Astron. Soc. Australia 33, e048 (2016).
  11. Müller, B., Annual Review of Nuclear and Particle Science 69, 253 (2019), arXiv:1904.11067 [astro-ph.HE] .
  12. Müller, B., Living Reviews in Computational Astrophysics 6, 3 (2020).
  13. Smartt, S. J., Annu. Rev. Astron. Astrophys.  47, 63 (2009).
  14. Smartt, S. J., Publ. Astron. Soc. Australia 32, 16 (2015).
  15. Spruit, H. C., Astron. Astrophys.  381, 923 (2002).
  16. Tayler, R. J., Mon. Not. R. Astron.  Soc.  161, 365 (1973).
  17. Usov, V. V., Nature  357, 472 (1992).
  18. Yahil, A., Astrophys. J.  265, 1047 (1983).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: