Statistical Inference of Optimal Allocations I: Regularities and their Implications (2403.18248v3)
Abstract: In this paper, we develop a functional differentiability approach for solving statistical optimal allocation problems. We derive Hadamard differentiability of the value functions through analyzing the properties of the sorting operator using tools from geometric measure theory. Building on our Hadamard differentiability results, we apply the functional delta method to obtain the asymptotic properties of the value function process for the binary constrained optimal allocation problem and the plug-in ROC curve estimator. Moreover, the convexity of the optimal allocation value functions facilitates demonstrating the degeneracy of first order derivatives with respect to the policy. We then present a double / debiased estimator for the value functions. Importantly, the conditions that validate Hadamard differentiability justify the margin assumption from the statistical classification literature for the fast convergence rate of plug-in methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.