Parity doublet model for baryon octets: ground states saturated by good diquarks and the role of bad diquarks for excited states
Abstract: Parity doublet model is an effective chiral model that includes the chiral variant and invariant masses of baryons. The chiral invariant mass has large impacts on the density dependence of models which can be constrained by neutron star observations. In the previous work, models of two-flavors have been considered up to a few times nuclear saturation density, but in such dense region it is also necessary to consider hyperons. With the chiral invariant masses baryons can stay massive in extreme environments (e.g., neutron stars) where the chiral symmetry restoration takes place. In this work, we generalize the previous $\mbox{SU(2)}_L \times \mbox{SU(2)}_R$ parity models of nucleons to $\mbox{SU(3)}_L \times \mbox{SU(3)}_R$ models of the baryon octet, within the linear realization of the chiral symmetry. The major problem in constructing such models has been too many candidates for the chiral representations of baryons. Motivated by the concepts of diquarks and the mended symmetry, we choose the $(3_L, \bar{3}_R) + (\bar{3}_L, 3_R)$, $(3_L, 6_R) + (6_L, 3_R)$ and $(1_L, 8_R) + (8_L, 1_R)$ representations and use quark diagrams to constrain the possible types of Yukawa interactions. The masses of the baryon octets for positive and negative baryons up to the first excitations are successfully reproduced. As expected from the diquark considerations, the ground state baryons are well dominated by $(3_L, \bar{3}_R) + (\bar{3}_L, 3_R)$ and $(1_L, 8_R) + (8_L, 1_R)$ representations, while the excited states require $(3_L, 6_R) + (6_L, 3_R)$ representations. Important applications of our model are the chiral restoration for strange quarks at large density and the continuity of diquarks from hadronic to quark matter. We also address the problem of large Yukawa couplings which are enhanced in three-flavor construction.
- S. Weinberg, Pion scattering lengths, Phys. Rev. Lett. 17, 616 (1966).
- S. Weinberg, Algebraic realizations of chiral symmetry, Phys. Rev. 177, 2604 (1969).
- S. Weinberg, Mended symmetries, Phys. Rev. Lett. 65, 1177 (1990).
- S. Weinberg, Pions in Large-N𝑁Nitalic_N Quantum Chromodynamics, Phys. Rev. Lett. 105, 261601 (2010), arXiv:1009.1537 [hep-ph] .
- Y. Nambu and G. Jona-Lasinio, Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1., Phys. Rev. 122, 345 (1961a).
- Y. Nambu and G. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity. II., Phys. Rev. 124, 246 (1961b).
- T. Hatsuda and T. Kunihiro, QCD phenomenology based on a chiral effective Lagrangian, Phys. Rept. 247, 221 (1994), arXiv:hep-ph/9401310 .
- C. E. Detar and T. Kunihiro, Linear σ𝜎\sigmaitalic_σ Model With Parity Doubling, Phys. Rev. D 39, 2805 (1989).
- D. Jido, T. Hatsuda, and T. Kunihiro, Chiral symmetry realization for even parity and odd parity baryon resonances, Phys. Rev. Lett. 84, 3252 (2000b), arXiv:hep-ph/9910375 .
- D. Jido, M. Oka, and A. Hosaka, Chiral symmetry of baryons, Prog. Theor. Phys. 106, 873 (2001), arXiv:hep-ph/0110005 .
- K. Nagata, A. Hosaka, and V. Dmitrasinovic, pi N and pi pi N Couplings of the Delta(1232) and its Chiral Partners, Phys. Rev. Lett. 101, 092001 (2008), arXiv:0804.3185 [hep-ph] .
- S. Gallas, F. Giacosa, and D. H. Rischke, Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons, Phys. Rev. D 82, 014004 (2010), arXiv:0907.5084 [hep-ph] .
- S. Gallas and F. Giacosa, Mirror versus naive assignment in chiral models for the nucleon, Int. J. Mod. Phys. A 29, 1450098 (2014), arXiv:1308.4817 [hep-ph] .
- C. Sasaki and I. Mishustin, Thermodynamics of dense hadronic matter in a parity doublet model, Phys. Rev. C 82, 035204 (2010), arXiv:1005.4811 [hep-ph] .
- J. Eser and J.-P. Blaizot, Thermodynamics of the parity-doublet model: Symmetric nuclear matter and the chiral transition, (2023), arXiv:2309.06566 [nucl-th] .
- T. Yamazaki and M. Harada, Constraint to chiral invariant masses of nucleons from GW170817 in an extended parity doublet model, Phys. Rev. C 100, 025205 (2019), arXiv:1901.02167 [nucl-th] .
- T. Minamikawa, T. Kojo, and M. Harada, Quark-hadron crossover equations of state for neutron stars: constraining the chiral invariant mass in a parity doublet model, Phys. Rev. C 103, 045205 (2021a), arXiv:2011.13684 [nucl-th] .
- T. Minamikawa, T. Kojo, and M. Harada, Chiral condensates for neutron stars in hadron-quark crossover: From a parity doublet nucleon model to a Nambu–Jona-Lasinio quark model, Phys. Rev. C 104, 065201 (2021b), arXiv:2107.14545 [nucl-th] .
- B. P. Abbott (LIGO Scientific Collaboration and Virgo Collaboration), Gw170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119, 161101 (2017).
- B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817: Measurements of neutron star radii and equation of state, Phys. Rev. Lett. 121, 161101 (2018), arXiv:1805.11581 [gr-qc] .
- T. E. Riley et al., A NICER View of the Massive Pulsar PSR J0740+6620 Informed by Radio Timing and XMM-Newton Spectroscopy, Astrophys. J. Lett. 918, L27 (2021), arXiv:2105.06980 [astro-ph.HE] .
- M. C. Miller et al., The Radius of PSR J0740+6620 from NICER and XMM-Newton Data, Astrophys. J. Lett. 918, L28 (2021), arXiv:2105.06979 [astro-ph.HE] .
- H.-X. Chen, V. Dmitrasinovic, and A. Hosaka, Baryon fields with U(L)(3) X U(R)(3) chiral symmetry II: Axial currents of nucleons and hyperons, Phys. Rev. D 81, 054002 (2010), arXiv:0912.4338 [hep-ph] .
- H.-X. Chen, V. Dmitrasinovic, and A. Hosaka, mathrmBaryonswith𝑚𝑎𝑡ℎ𝑟𝑚𝐵𝑎𝑟𝑦𝑜𝑛𝑠𝑤𝑖𝑡ℎmathrm{Baryonswith}italic_m italic_a italic_t italic_h italic_r italic_m italic_B italic_a italic_r italic_y italic_o italic_n italic_s italic_w italic_i italic_t italic_h UL(3)×UR(3)subscript𝑈𝐿3subscript𝑈𝑅3U_{L}(3)\times U_{R}(3)italic_U start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ( 3 ) × italic_U start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT ( 3 ) Chiral Symmetry IV: Interactions with Chiral (8,1) ⊕direct-sum\oplus⊕ (1,8) Vector and Axial-vector Mesons and Anomalous Magnetic Moments, Phys. Rev. C 85, 055205 (2012), arXiv:1109.3130 [hep-ph] .
- H. Nishihara and M. Harada, Extended Goldberger-Treiman relation in a three-flavor parity doublet model, Phys. Rev. D 92, 054022 (2015), arXiv:1506.07956 [hep-ph] .
- V. Dmitrašinović, H.-X. Chen, and A. Hosaka, Baryon fields with UL(3)×UR(3) chiral symmetry. V. Pion-nucleon and kaon-nucleon ΣΣ\Sigmaroman_Σ terms, Phys. Rev. C 93, 065208 (2016), arXiv:1812.03414 [hep-ph] .
- R. L. Workman et al. (Particle Data Group), Review of Particle Physics, PTEP 2022, 083C01 (2022).
- M. Marczenko, K. Redlich, and C. Sasaki, Fluctuations near the liquid-gas and chiral phase transitions in hadronic matter, Phys. Rev. D 107, 054046 (2023), arXiv:2301.09866 [nucl-th] .
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.