Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A unified view of direct measurement of quantum states, processes, and measurements (2403.18210v1)

Published 27 Mar 2024 in quant-ph

Abstract: The dynamics of a quantum system are characterized by three components: quantum state, quantum process, and quantum measurement. The proper measurement of these components is a crucial issue in quantum information processing. Recently, direct measurement methods have been proposed and demonstrated wherein each complex matrix element of these three components is obtained separately, without the need for quantum tomography of the entire matrix. Since these direct measurement methods have been proposed independently, no theoretical framework has been presented to unify them despite the time symmetry of quantum dynamics. In this study, we propose a theoretical framework to systematically derive direct measurement methods for these three components. Following this framework and further utilizing the basis-shift unitary transformation, we have derived the most efficient direct measurement method using qubit probes. Additionally, we have experimentally demonstrated the feasibility of the direct measurement method of quantum states using optical pulse trains.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. K. Vogel and H. Risken, “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase,” Phys. Rev. A 40, 2847–2849 (1989).
  2. D. T. Smithey, M. Beck, M. G. Raymer,  and A. Faridani, “Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).
  3. G Breitenbach, S Schiller,  and J Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).
  4. Andrew G. White, Daniel F. V. James, Philippe H. Eberhard,  and Paul G. Kwiat, “Nonmaximally entangled states: Production, characterization, and utilization,” Phys. Rev. Lett. 83, 3103–3107 (1999).
  5. Daniel F. V. James, Paul G. Kwiat, William J. Munro,  and Andrew G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
  6. J. F. Poyatos, J. I. Cirac,  and P. Zoller, “Complete characterization of a quantum process: The two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
  7. I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” Journal of Modern Optics 44, 2455–2467 (1997).
  8. Andrew M. Childs, Isaac L. Chuang,  and Debbie W. Leung, “Realization of quantum process tomography in nmr,” Phys. Rev. A 64, 012314 (2001).
  9. M. W. Mitchell, C. W. Ellenor, S. Schneider,  and A. M. Steinberg, “Diagnosis, prescription, and prognosis of a bell-state filter by quantum process tomography,” Phys. Rev. Lett. 91, 120402 (2003).
  10. Taoufik Amri, Julien Laurat,  and Claude Fabre, “Characterizing quantum properties of a measurement apparatus: Insights from the retrodictive approach,” Phys. Rev. Lett. 106, 020502 (2011).
  11. Adam C. Keith, Charles H. Baldwin, Scott Glancy,  and E. Knill, “Joint quantum-state and measurement tomography with incomplete measurements,” Phys. Rev. A 98, 042318 (2018).
  12. Marco Cattaneo, Matteo A. C. Rossi, Keijo Korhonen, Elsi-Mari Borrelli, Guillermo García-Pérez, Zoltán Zimborás,  and Daniel Cavalcanti, “Self-consistent quantum measurement tomography based on semidefinite programming,” Phys. Rev. Res. 5, 033154 (2023).
  13. Ryszard Horodecki, Paweł Horodecki, Michał Horodecki,  and Karol Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
  14. Huichao Xu, Feixiang Xu, Thomas Theurer, Dario Egloff, Zi-Wen Liu, Nengkun Yu, Martin B. Plenio,  and Lijian Zhang, “Experimental quantification of coherence of a tunable quantum detector,” Phys. Rev. Lett. 125, 060404 (2020).
  15. Sam Pallister, Noah Linden,  and Ashley Montanaro, “Optimal verification of entangled states with local measurements,” Phys. Rev. Lett. 120, 170502 (2018).
  16. Steven T. Flammia and Yi-Kai Liu, “Direct fidelity estimation from few pauli measurements,” Phys. Rev. Lett. 106, 230501 (2011).
  17. Marcus P. da Silva, Olivier Landon-Cardinal,  and David Poulin, “Practical characterization of quantum devices without tomography,” Phys. Rev. Lett. 107, 210404 (2011).
  18. Hsin-Yuan Huang, Richard Kueng,  and John Preskill, “Predicting many properties of a quantum system from very few measurements,” Nature Physics 16, 1050–1057 (2020).
  19. Jeff S Lundeen, Brandon Sutherland, Aabid Patel, Corey Stewart,  and Charles Bamber, “Direct measurement of the quantum wavefunction,” Nature 474, 188–191 (2011).
  20. Yakir Aharonov, David Z. Albert,  and Lev Vaidman, “How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100,” Phys. Rev. Lett. 60, 1351–1354 (1988).
  21. Charles Bamber and Jeff S. Lundeen, “Observing dirac’s classical phase space analog to the quantum state,” Phys. Rev. Lett. 112, 070405 (2014).
  22. G. S. Thekkadath, L. Giner, Y. Chalich, M. J. Horton, J. Banker,  and J. S. Lundeen, “Direct measurement of the density matrix of a quantum system,” Phys. Rev. Lett. 117, 120401 (2016).
  23. Wei-Wei Pan, Xiao-Ye Xu, Yaron Kedem, Qin-Qin Wang, Zhe Chen, Munsif Jan, Kai Sun, Jin-Shi Xu, Yong-Jian Han, Chuan-Feng Li,  and Guang-Can Guo, “Direct measurement of a nonlocal entangled quantum state,” Phys. Rev. Lett. 123, 150402 (2019).
  24. Y. Kim, Y.-S. Kim, S.-Y. Lee, S.-W. Han, S. Moon, Y.-H. Kim,  and Y.-W. Cho, “Direct quantum process tomography via measuring sequential weak values of incompatible observables,” Nature communications 9, 192 (2018).
  25. Akshay Gaikwad, Gayatri Singh, Kavita Dorai, et al., “Direct tomography of quantum states and processes via weak measurements of pauli spin operators on an nmr quantum processor,” arXiv preprint arXiv:2303.06892  (2023).
  26. Liang Xu, Huichao Xu, Tao Jiang, Feixiang Xu, Kaimin Zheng, Ben Wang, Aonan Zhang,  and Lijian Zhang, “Direct characterization of quantum measurements using weak values,” Phys. Rev. Lett. 127, 180401 (2021a).
  27. Giuseppe Vallone and Daniele Dequal, “Strong measurements give a better direct measurement of the quantum wave function,” Phys. Rev. Lett. 116, 040502 (2016).
  28. Luca Calderaro, Giulio Foletto, Daniele Dequal, Paolo Villoresi,  and Giuseppe Vallone, “Direct reconstruction of the quantum density matrix by strong measurements,” Phys. Rev. Lett. 121, 230501 (2018).
  29. Kazuhisa Ogawa, Takumi Okazaki, Hirokazu Kobayashi, Toshihiro Nakanishi,  and Akihisa Tomita, “Direct measurement of ultrafast temporal wavefunctions,” Optics express 29, 19403–19416 (2021).
  30. Yiyu Zhou, Jiapeng Zhao, Darrick Hay, Kendrick McGonagle, Robert W. Boyd,  and Zhimin Shi, “Direct tomography of high-dimensional density matrices for general quantum states of photons,” Phys. Rev. Lett. 127, 040402 (2021).
  31. Congxiu Li, Yaxin Wang, Tianfeng Feng, Zhihao Li, Changliang Ren,  and Xiaoqi Zhou, “Direct measurement of density-matrix elements with a phase-shifting technique on a quantum photonic chip,” Phys. Rev. A 105, 062414 (2022).
  32. Chen-Rui Zhang, Meng-Jun Hu, Zhi-Bo Hou, Jun-Feng Tang, Jie Zhu, Guo-Yong Xiang, Chuan-Feng Li, Guang-Can Guo,  and Yong-Sheng Zhang, “Direct measurement of the two-dimensional spatial quantum wave function via strong measurements,” Phys. Rev. A 101, 012119 (2020).
  33. Ming-Cheng Chen, Yuan Li, Run-Ze Liu, Dian Wu, Zu-En Su, Xi-Lin Wang, Li Li, Nai-Le Liu, Chao-Yang Lu,  and Jian-Wei Pan, “Directly measuring a multiparticle quantum wave function via quantum teleportation,” Phys. Rev. Lett. 127, 030402 (2021).
  34. Shanchao Zhang, Yiru Zhou, Yefeng Mei, Kaiyu Liao, Yong-Li Wen, Jianfeng Li, Xin-Ding Zhang, Shengwang Du, Hui Yan,  and Shi-Liang Zhu, “δ𝛿\deltaitalic_δ-quench measurement of a pure quantum-state wave function,” Phys. Rev. Lett. 123, 190402 (2019).
  35. Liang Xu, Huichao Xu, Jie Xie, Hui Li, Lin Zhou, Feixiang Xu,  and Lijian Zhang, “Direct characterization of coherence of quantum detectors by sequential measurements,” Advanced Photonics 3, 066001–066001 (2021b).
  36. Kazuhisa Ogawa, Osamu Yasuhiko, Hirokazu Kobayashi, Toshihiro Nakanishi,  and Akihisa Tomita, “A framework for measuring weak values without weak interactions and its diagrammatic representation,” New Journal of Physics 21, 043013 (2019).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.