Quantum fields on projective geometries (2403.17996v2)
Abstract: Considering homogeneous four-dimensional space-time geometries within real projective geometry provides a mathematically well-defined framework to discuss their deformations and limits without the appearance of coordinate singularities. On Lie algebra level the related conjugacy limits act isomorphically to concatenations of contractions. We axiomatically introduce projective quantum fields on homogeneous space-time geometries, based on correspondingly generalized unitary transformation behavior and projectivization of the field operators. Projective correlators and their expectation values remain well-defined in all geometry limits, which includes their ultraviolet and infrared limits. They can degenerate with support on space-time boundaries and other lower-dimensional space-time subspaces. We explore fermionic and bosonic superselection sectors as well as the irreducibility of projective quantum fields. Dirac fermions appear, which obey spin-statistics as composite quantum fields. The framework systematically formalizes and generalizes the ambient space techniques regularly employed in conformal field theory.
- E. Bergshoeff, J. Figueroa-O’Farrill, and J. Gomis, “A non-Lorentzian primer,” SciPost Phys. Lect. Notes 69, 1 (2023), arXiv:2206.12177 [hep-th].
- E. Inönü and E. P. Wigner, “On the contraction of groups and their representations,” PNAS 39, 510 (1953).
- D. Cooper, J. Danciger, and A. Wienhard, “Limits of geometries,” Trans. Amer. Math. Soc. 370, 6585 (2018), arXiv:1408.4109 [math.GT].
- J. B. Gutowski and H. S. Reall, “Supersymmetric AdS(5) black holes,” JHEP 02, 006 (2004), arXiv:hep-th/0401042.
- R. K. Kaul and S. Sengupta, “Degenerate spacetimes in first order gravity,” Phys. Rev. D 93, 084026 (2016), arXiv:1602.04559 [gr-qc].
- A. Bagchi, A. Banerjee, and H. Muraki, “Boosting to BMS,” JHEP 09, 251 (2022), arXiv:2205.05094 [hep-th].
- F. Faedo, S. Klemm, and P. Mariotti, “Rotating black holes with Nil or SL(2, ℝℝ\mathbb{R}blackboard_R) horizons,” JHEP 05, 138 (2023), arXiv:2212.04890 [hep-th].
- J. M. Maldacena, “The Large-N𝑁Nitalic_N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200.
- L. Susskind, “Holography in the flat space limit,” AIP Conf. Proc. 493, 98 (1999), arXiv:hep-th/9901079.
- A. L. Fitzpatrick, E. Katz, D. Poland, and D. Simmons-Duffin, “Effective conformal theory and the flat-space limit of AdS,” JHEP 07, 023 (2011), arXiv:1007.2412 [hep-th].
- E. Hijano and D. Neuenfeld, “Soft photon theorems from CFT Ward identites in the flat limit of AdS/CFT,” JHEP 11, 009 (2020), arXiv:2005.03667 [hep-th].
- L. E. Parker and D. Toms, Quantum field theory in curved spacetime: Quantized fields and gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, England, 2009).
- R. M. Wald, Quantum field theory in curved space-time and black hole thermodynamics, Chicago Lectures in Physics (University of Chicago Press, Chicago, Illinois, 1995).
- S. Hollands and R. M. Wald, “Quantum fields in curved spacetime,” Phys. Rept. 574, 1 (2015), arXiv:1401.2026 [gr-qc].
- K. Fredenhagen and K. Rejzner, “Quantum field theory on curved spacetimes: Axiomatic framework and examples,” J. Math. Phys. 57, 031101 (2016), arXiv:1412.5125 [math-ph].
- D. Spitz, “Similarities between projective quantum fields and the Standard Model,” to appear soon .
- V. Ovsienko and S. Tabachnikov, Projective differential geometry old and new: From the Schwarzian derivative to the cohomology of diffeomorphism groups, Vol. 165 (Cambridge University Press, Cambridge, England, 2004).
- J. Gallier, “Basics of projective geometry,” in Geometric Methods and Applications: For Computer Science and Engineering (Springer Science & Business Media, New York, New York, 2011) pp. 103–175.
- C. Duval, G. W. Gibbons, P. A. Horvathy, and P. M. Zhang, “Carroll versus Newton and Galilei: Two dual non-Einsteinian concepts of time,” Class. Quant. Grav. 31, 085016 (2014), arXiv:1402.0657 [gr-qc].
- L. Ciambelli, R. G. Leigh, C. Marteau, and P. M. Petropoulos, “Carroll structures, null geometry and conformal isometries,” Phys. Rev. D 100, 046010 (2019), arXiv:1905.02221 [hep-th].
- S. Fisher and P. Gartside, “On the space of subgroups of a compact group I,” Topol. Appl. 156, 862 (2009a).
- S. Fisher and P. Gartside, “On the space of subgroups of a compact group II,” Topol. Appl. 156, 855 (2009b).
- I. Biringer, “Metrizing the Chabauty topology,” Geom. Dedicata 195, 19 (2018).
- A. Leitner, ‘‘Conjugacy limits of the diagonal Cartan subgroup in SL3(ℝ)subscriptSL3ℝ\mathrm{SL}_{3}(\mathbb{R})roman_SL start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( blackboard_R ),” Geom. Dedicata 180, 135 (2016a), arXiv:1406.4534 [math.GT].
- A. Leitner, “Limits under conjugacy of the diagonal subgroup in SLn(ℝ)subscriptSL𝑛ℝ\mathrm{SL}_{n}(\mathbb{R})roman_SL start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( blackboard_R ),” Proc. Amer. Math. Soc. 144, 3243 (2016b), arXiv:1412.5523 [math.GT].
- N. Lazarovich and A. Leitner, “Local limits of connected subgroups of SL3(ℝ)subscriptSL3ℝ\mathrm{SL}_{3}(\mathbb{R})roman_SL start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( blackboard_R ),” C. R. Math. 359, 363 (2021), arXiv:1911.09491 [math.GT].
- A. H. Dooley and J. Rice, “On contractions of semisimple Lie groups,” Trans. Amer. Math. Soc. 289, 185 (1985).
- M. Nesterenko and R. Popovych, “Contractions of low-dimensional Lie algebras,” J. Math. Phys. 47, 123515 (2006).
- J. H. C. Whitehead, “The representation of projective spaces,” Ann. Math. , 327 (1931).
- N. Tanaka, “Projective connections and projective transformations,” Nagoya Math. J. 12, 1 (1957).
- M. Eastwood, “Notes on projective differential geometry,” in Symmetries and Overdetermined Systems of Partial Differential Equations, edited by M. Eastwood and W. Miller (Springer Science & Business Media, New York, New York, 2008) pp. 41–60.
- S. Weinberg, The quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, Cambridge, England, 2005).
- B. O’Neill, Semi-Riemannian geometry with applications to relativity (Academic Press, San Diego, California, 1983).
- H. J. Borchers, “On revolutionizing quantum field theory with Tomita’s modular theory,” J. Math. Phys. 41, 3604 (2000).
- E. Witten, ‘‘APS medal for exceptional achievement in research: Invited article on entanglement properties of quantum field theory,” Rev. Mod. Phys. 90, 045003 (2018), arXiv:1803.04993 [hep-th].
- T. Appelquist and R. D. Pisarski, “High-temperature Yang-Mills theories and three-dimensional quantum chromodynamics,” Phys. Rev. D 23, 2305 (1981).
- A. N. Jourjine, “Quantum field theory in the infinite temperature limit,” Ann. Phys. 155, 305 (1984).
- C. A. Weibel, An introduction to homological algebra (Cambridge University Press, Cambridge, England, 1994).
- C. Roger, “Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations,” Rep. Math. Phys. 35, 225 (1995).
- R. Verch, “A spin statistics theorem for quantum fields on curved space-time manifolds in a generally covariant framework,” Commun. Math. Phys. 223, 261 (2001), arXiv:math-ph/0102035.
- W.-K. Tung, Group theory in physics, Vol. 1 (World Scientific, Singapore, 1985).
- X. Bekaert and N. Boulanger, “The unitary representations of the Poincaré group in any spacetime dimension,” SciPost Phys. Lect. Notes 30, 1 (2021), arXiv:hep-th/0611263.
- W. Fulton and J. Harris, Representation theory: A first course, Vol. 129 (Springer Science & Business Media, New York, New York, 2013).
- R. C. King, “Branching rules for classical Lie groups using tensor and spinor methods,” J. Phys. A 8, 429 (1975).
- E. Molnár, “The projective interpretation of the eight 3-dimensional homogeneous geometries,” Beitr. Algebra Geom. 38, 261 (1997).
- B. Thiel, Einheitliche Beschreibung der acht Thurstonschen Geometrien (Diplomarbeit, Universitat zu Göttingen, 1997).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.