Tidal deformations of slowly spinning isolated horizons (2403.17114v2)
Abstract: It is generally believed that tidal deformations of a black hole in an external field, as measured using its gravitational field multipoles, vanish. However, this does not mean that the black hole horizon is not deformed. Here we shall discuss the deformations of a black hole horizon in the presence of an external field using a characteristic initial value formulation. Unlike existing methods, the starting point here is the black hole horizon itself. The effect of, say, a binary companion responsible for the tidal deformation is encoded in the geometry of the spacetime in the vicinity of the horizon. The near horizon spacetime geometry, i.e. the metric, spin coefficients, and curvature components, are all obtained by integrating the Einstein field equations outwards starting from the horizon. This method yields a reformulation of black hole perturbation theory in a neighborhood of the horizon. By specializing the horizon geometry to be a perturbation of Kerr, this method can be used to calculate the metric for a tidally deformed Kerr black hole with arbitrary spin. As a first application, we apply this formulation here to a slowly spinning black hole and explicitly construct the spacetime metric in a neighborhood of the horizon. We propose natural definitions of the electric and magnetic surficial Love numbers based on the Weyl tensor component $\Psi_2$. From our solution, we calculate the tidal perturbations of the black hole, and we extract both the field Love numbers and the surficial Love numbers which quantify the deformations of the horizon.
- E. E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502 (2008), arXiv:0709.1915 [astro-ph] .
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 011001 (2019), arXiv:1805.11579 [gr-qc] .
- E. Poisson, Phys. Rev. D 104, 104062 (2021), arXiv:2108.07328 [gr-qc] .
- T. Binnington and E. Poisson, Phys. Rev. D 80, 084018 (2009), arXiv:0906.1366 [gr-qc] .
- A. Le Tiec and M. Casals, Phys. Rev. Lett. 126, 131102 (2021), arXiv:2007.00214 [gr-qc] .
- T. Damour and A. Nagar, Phys. Rev. D 80, 084035 (2009), arXiv:0906.0096 [gr-qc] .
- T. Damour and A. Nagar, Phys. Rev. D 81, 084016 (2010), arXiv:0911.5041 [gr-qc] .
- N. Gürlebeck, Phys. Rev. Lett. 114, 151102 (2015), arXiv:1503.03240 [gr-qc] .
- F. Ryan, Phys.Rev. D52, 5707 (1995).
- L. Barack and C. Cutler, Phys. Rev. D 75, 042003 (2007), arXiv:gr-qc/0612029 .
- T. Damour and O. M. Lecian, Phys.Rev. D80, 044017 (2009), arXiv:0906.3003 [gr-qc] .
- R. P. Geroch and J. B. Hartle, J. Math. Phys. 23, 680 (1982).
- S. Fairhurst and B. Krishnan, Int. J. Mod. Phys. D10, 691 (2001), arXiv:gr-qc/0010088 .
- J. B. Hartle, Phys. Rev. D 8, 1010 (1973).
- J. B. Hartle, Phys. Rev. D 9, 2749 (1974).
- S. O’Sullivan and S. A. Hughes, Phys. Rev. D 90, 124039 (2014), [Erratum: Phys.Rev.D 91, 109901 (2015)], arXiv:1407.6983 [gr-qc] .
- S. O’Sullivan and S. A. Hughes, Phys. Rev. D 94, 044057 (2016), arXiv:1505.03809 [gr-qc] .
- M. Cabero and B. Krishnan, Class. Quant. Grav. 32, 045009 (2015), arXiv:1407.7656 [gr-qc] .
- V. Prasad, Phys. Rev. D 109, 044033 (2024).
- K. S. Thorne and J. B. Hartle, Phys. Rev. D 31, 1815 (1984).
- P. D. D’Eath, Phys. Rev. D 11, 1387 (1975).
- F. K. Manasse and C. W. Misner, J. Math. Phys. 4, 735 (1963).
- F. K. Manasse, J. Math. Phys. 4, 746 (1963).
- E. Poisson and I. Vlasov, Physical Review D 81 (2010), 10.1103/physrevd.81.024029.
- E. Poisson, Phys. Rev. D 91, 044004 (2015), arXiv:1411.4711 [gr-qc] .
- M. M. Ivanov and Z. Zhou, Phys. Rev. Lett. 130, 091403 (2023a), arXiv:2209.14324 [hep-th] .
- M. M. Ivanov and Z. Zhou, Phys. Rev. D 107, 084030 (2023b), arXiv:2208.08459 [hep-th] .
- A. Ashtekar et al., Phys. Rev. Lett. 85, 3564 (2000c), arXiv:gr-qc/0006006 .
- T. M. Adamo and E. T. Newman, Class. Quant. Grav. 26, 235012 (2009), arXiv:0908.0751 [gr-qc] .
- J. Lewandowski and T. Pawłowski, Class. Quant. Grav. 23, 6031 (2006), arXiv:gr-qc/0605026 .
- J. Lewandowski and T. Pawłowski, Int. J. Mod. Phys. D11, 739 (2002), arXiv:gr-qc/0101008 .
- H. Friedrich and J. Stewart, Proc. Roy. Soc. Lond. A A385, 345 (1983).
- J. Lewandowski, Class. Quant. Grav. 17, L53 (2000), arXiv:gr-qc/9907058 .
- J. Lewandowski and C. Li, (2018), arXiv:1809.04715 [gr-qc] .
- B. Krishnan, Class.Quant.Grav. 29, 205006 (2012), arXiv:1204.4345 [gr-qc] .
- I. Booth and S. Fairhurst, Phys. Rev. Lett. 92, 011102 (2004), arXiv:gr-qc/0307087 .
- I. Booth, Phys. Rev. D 87, 024008 (2013), arXiv:1207.6955 [gr-qc] .
- A. Ashtekar and B. Krishnan, Living Rev. Rel. 7, 10 (2004), arXiv:gr-qc/0407042 .
- I. Booth, Can. J. Phys. 83, 1073 (2005), arXiv:gr-qc/0508107 .
- S. Hayward, Black Holes: New Horizons, New horizons (World Scientific, 2013).
- R. Owen, Phys. Rev. D80, 084012 (2009), arXiv:0907.0280 [gr-qc] .
- I. S. Booth, Class. Quant. Grav. 18, 4239 (2001), arXiv:gr-qc/0105009 .
- E. Gourgoulhon and J. L. Jaramillo, Phys. Rept. 423, 159 (2006), arXiv:gr-qc/0503113 .
- I. Robinson and A. Trautman, Proc. Roy. Soc. Lond. A 265, 463 (1962).
- P. T. Chrusciel, Proc. Roy. Soc. Lond. A 436, 299 (1992).
- E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
- R. Penrose and W. Rindler, Spinors and Spacetime: 1. Two-Spinor Calculus and Relativistic Fields (Cambridge, Uk: Univ. Pr. ( 1984) 458 P. ( Cambridge Monographs On Mathematical Physics), 1984).
- S. Chandrasekhar, The mathematical theory of black holes (Oxford Classic Texts in the Physical Sciences, 1985).
- J. Stewart, Advanced General Relativity (Cambridge Monographs on Mathematical Physics, 1991).
- I. Booth and S. Fairhurst, Class. Quant. Grav. 22, 4515 (2005), arXiv:gr-qc/0505049 .
- I. S. Booth and S. Fairhurst, Class. Quant. Grav. 20, 4507 (2003), arXiv:gr-qc/0301123 .
- J. Lewandowski and T. Pawlowski, International Journal of Modern Physics D 11, 739–746 (2002).
- J. Lewandowski and T. Pawlowski, Class. Quant. Grav. 20, 587 (2003), arXiv:gr-qc/0208032 .
- H. Friedrich, Proc. Roy. Soc. Lond. A375, 169 (1981).
- J. Lewandowski and T. Pawlowski, Class. Quant. Grav. 31, 175012 (2014), arXiv:1404.7836 [gr-qc] .
- In the perturbative limit, this is an example of the algebraically special perturbations studied in [116].
- J. Podolsky and O. Svitek, Phys. Rev. D80, 124042 (2009), arXiv:0911.5317 [gr-qc] .
- L. Smarr, Phys. Rev. D7, 289 (1973).
- Notice that we use the subscript 00{}_{0}start_FLOATSUBSCRIPT 0 end_FLOATSUBSCRIPT to refer to any axisymmetric background, while the quantities with ∘{}_{\circ}start_FLOATSUBSCRIPT ∘ end_FLOATSUBSCRIPT refer specifically to the Schwarzschild background with P∘subscript𝑃P_{\circ}italic_P start_POSTSUBSCRIPT ∘ end_POSTSUBSCRIPT given by Eq. (56).
- M. Korzynski, Class. Quant. Grav. 24, 5935 (2007), arXiv:0707.2824 [gr-qc] .
- Notice that our convention for the ðitalic-ð\ethitalic_ð operator is slightly different to the one presented in [83]. The action of ðitalic-ð\ethitalic_ð over the spherical harmonics is given by ð¯ðYlms=−(l−s)(l+s+1)2c2Ylms¯italic-ðitalic-ðsubscriptsubscript𝑌𝑙𝑚𝑠𝑙𝑠𝑙𝑠12superscript𝑐2subscriptsubscript𝑌𝑙𝑚𝑠\bar{\eth}\eth{}_{s}Y_{lm}=-\frac{(l-s)(l+s+1)}{2c^{2}}{}_{s}Y_{lm}over¯ start_ARG italic_ð end_ARG italic_ð start_FLOATSUBSCRIPT italic_s end_FLOATSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_l italic_m end_POSTSUBSCRIPT = - divide start_ARG ( italic_l - italic_s ) ( italic_l + italic_s + 1 ) end_ARG start_ARG 2 italic_c start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_FLOATSUBSCRIPT italic_s end_FLOATSUBSCRIPT italic_Y start_POSTSUBSCRIPT italic_l italic_m end_POSTSUBSCRIPT.
- Plugging the values of the surface gravity and horizon radius for a Schwarzschild black hole we would obtain κ~(ℓ)=12csubscript~𝜅ℓ12𝑐\tilde{\kappa}_{(\ell)}=\frac{1}{2c}over~ start_ARG italic_κ end_ARG start_POSTSUBSCRIPT ( roman_ℓ ) end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 italic_c end_ARG, and c=R𝑐𝑅c=Ritalic_c = italic_R.
- S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
- S. A. Teukolsky, Astrophys. J. 185, 635 (1973).
- E. Poisson, Phys. Rev. Lett. 94, 161103 (2005), arXiv:gr-qc/0501032 .
- A. Flandera, (2016), arXiv:1611.02215 [gr-qc] .
- S. Chandrasekhar, Monthly Notices of the Royal Astronomical Society 93, 462 (1933).
- R. A. Brooker and T. W. Olle, Monthly Notices of the Royal Astronomical Society 115, 101 (1955), https://academic.oup.com/mnras/article-pdf/115/1/101/9360707/mnras115-0101.pdf .
- J. M. Lattimer and M. Prakash, Phys. Rept. 621, 127 (2016), arXiv:1512.07820 [astro-ph.SR] .
- T. Hinderer, Astrophys. J. 677, 1216 (2008), [Erratum: Astrophys.J. 697, 964 (2009)], arXiv:0711.2420 [astro-ph] .
- K. S. Thorne, Rev. Mod. Phys. 52, 299 (1980).
- T. Dietrich et al., Phys. Rev. D 99, 024029 (2019), arXiv:1804.02235 [gr-qc] .
- P. Landry and E. Poisson, Phys. Rev. D 89, 124011 (2014), arXiv:1404.6798 [gr-qc] .
- T. Damour, “Gravitational radiation ed n deruelle and t piran,” (1983).
- S. Chandrasekhar, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 1 (1984).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.