An inflationary cosmology from anti-de Sitter wormholes (2403.17046v1)
Abstract: We propose a new type of wavefunction for the universe computed from the Euclidean path integral, with asymptotically $AdS$ boundary conditions. In the semiclassical limit, it describes a Euclidean (half)-wormhole geometry, exhibiting a local maximum of the scale factor at the surface of reflection symmetry, giving rise to an expanding universe upon analytic continuation to Lorentzian signature. We find that these Euclidean wormholes set natural initial conditions for inflation and that the semi-classical Wheeler-DeWitt wavefunction can favor a long lasting inflationary epoch, resolving a well known issue of the no-boundary proposal. Due to the asymptotic $AdS$ conditions in the Euclidean past they raise the possibility of describing the physics of inflating cosmologies and their perturbations within the context of holography.
- C. L. B. et.al., Nine-year wilkinson microwave anisotropy probe (wmap) observations: Final maps and results, The Astrophysical Journal Supplement Series 208, 20 (2013).
- A. H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D 23, 347 (1981).
- A. D. Linde, The Inflationary Universe, Rept. Prog. Phys. 47, 925 (1984).
- V. F. Mukhanov and G. V. Chibisov, Quantum Fluctuations and a Nonsingular Universe, JETP Lett. 33, 532 (1981).
- A. A. Starobinsky, Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations, Phys. Lett. B 117, 175 (1982).
- A. H. Guth and S. Y. Pi, Fluctuations in the New Inflationary Universe, Phys. Rev. Lett. 49, 1110 (1982).
- J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe, Phys. Rev. D 28, 679 (1983).
- B. S. DeWitt, Quantum Theory of Gravity. 1. The Canonical Theory, Phys. Rev. 160, 1113 (1967).
- J. B. Hartle and S. W. Hawking, Wave Function of the Universe, Phys. Rev. D 28, 2960 (1983).
- J. B. Hartle, S. W. Hawking, and T. Hertog, No-Boundary Measure of the Universe, Phys. Rev. Lett. 100, 201301 (2008), arXiv:0711.4630 [hep-th] .
- A. Vilenkin, Creation of Universes from Nothing, Phys. Lett. B 117, 25 (1982).
- A. Vilenkin, The Birth of Inflationary Universes, Phys. Rev. D 27, 2848 (1983).
- J.-L. Lehners, Review of the no-boundary wave function, Phys. Rept. 1022, 1 (2023), arXiv:2303.08802 [hep-th] .
- J. Maldacena, Comments on the no boundary wavefunction and slow roll inflation, (2024), arXiv:2403.10510 [hep-th] .
- J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
- E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
- S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428, 105 (1998), arXiv:hep-th/9802109 .
- J. M. Maldacena and L. Maoz, Wormholes in AdS, JHEP 02, 053, arXiv:hep-th/0401024 .
- P. Betzios, N. Gaddam, and O. Papadoulaki, Antipodal correlation on the meron wormhole and a bang-crunch universe, Phys. Rev. D 97, 126006 (2018), arXiv:1711.03469 [hep-th] .
- P. Betzios, E. Kiritsis, and O. Papadoulaki, Euclidean Wormholes and Holography, JHEP 06, 042, arXiv:1903.05658 [hep-th] .
- P. Betzios, E. Kiritsis, and O. Papadoulaki, Interacting systems and wormholes, JHEP 02, 126, arXiv:2110.14655 [hep-th] .
- Although it has been argued that the aforementioned cosmological puzzles might be resolved by other means [25].
- Y. Akrami et al. (Planck), Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
- M. Gutperle and W. Sabra, Instantons and wormholes in Minkowski and (A)dS spaces, Nucl. Phys. B 647, 344 (2002), arXiv:hep-th/0206153 .
- T. Hertog, M. Trigiante, and T. Van Riet, Axion Wormholes in AdS Compactifications, JHEP 06, 067, arXiv:1702.04622 [hep-th] .
- V. A. Rubakov and P. G. Tinyakov, Gravitational Instantons and Creation of Expanding Universes, Phys. Lett. B 214, 334 (1988).
- C. Jonas, G. Lavrelashvili, and J.-L. Lehners, Zoo of axionic wormholes, Phys. Rev. D 108, 066012 (2023), arXiv:2306.11129 [hep-th] .
- See [32] and the supplementary material provided for more details.
- L. Boubekeur and D. H. Lyth, Hilltop inflation, JCAP 07, 010, arXiv:hep-ph/0502047 .
- D. Baumann and L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2015) arXiv:1404.2601 [hep-th] .
- S. Weinberg, Quantum contributions to cosmological correlations, Phys. Rev. D 72, 043514 (2005), arXiv:hep-th/0506236 .
- O. Janssen, Slow-roll approximation in quantum cosmology, Class. Quant. Grav. 38, 095003 (2021), arXiv:2009.06282 [gr-qc] .
- We should emphasize that this issue crucially rests upon the fact that the on-shell action of the Euclidean De-Sitter instanton is negative. The value of the inflaton is also set by the sphere radius at horizon crossing.
- It has been argued though, that imposing Robin boundary conditions for the modes at vanishing scale factor could potentially cure this problem [Vilenkin:2018dch].
- M. Taylor and W. Woodhead, The holographic F theorem, (2016), arXiv:1604.06809 [hep-th] .
- See the supplemental material for details.
- J. Feldbrugge, J.-L. Lehners, and N. Turok, Inconsistencies of the New No-Boundary Proposal, Universe 4, 100 (2018), arXiv:1805.01609 [hep-th] .
- S. R. Coleman and F. De Luccia, Gravitational Effects on and of Vacuum Decay, Phys. Rev. D 21, 3305 (1980).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.