Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An alternative measure for quantifying the heterogeneity in meta-analysis (2403.16706v2)

Published 25 Mar 2024 in stat.ME

Abstract: Quantifying the heterogeneity is an important issue in meta-analysis, and among the existing measures, the $I2$ statistic is most commonly used. In this paper, we first illustrate with a simple example that the $I2$ statistic is heavily dependent on the study sample sizes, mainly because it is used to quantify the heterogeneity between the observed effect sizes. To reduce the influence of sample sizes, we introduce an alternative measure that aims to directly measure the heterogeneity between the study populations involved in the meta-analysis. We further propose a new estimator, namely the $I_A2$ statistic, to estimate the newly defined measure of heterogeneity. For practical implementation, the exact formulas of the $I_A2$ statistic are also derived under two common scenarios with the effect size as the mean difference (MD) or the standardized mean difference (SMD). Simulations and real data analysis demonstrate that the $I_A2$ statistic provides an asymptotically unbiased estimator for the absolute heterogeneity between the study populations, and it is also independent of the study sample sizes as expected. To conclude, our newly defined $I_A2$ statistic can be used as a supplemental measure of heterogeneity to monitor the situations where the study effect sizes are indeed similar with little biological difference. In such scenario, the fixed-effect model can be appropriate; nevertheless, when the sample sizes are sufficiently large, the $I2$ statistic may still increase to 1 and subsequently suggest the random-effects model for meta-analysis.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.