Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Domain Adaptive Detection of MAVs: A Benchmark and Noise Suppression Network (2403.16669v1)

Published 25 Mar 2024 in cs.RO and cs.CV

Abstract: Visual detection of Micro Air Vehicles (MAVs) has attracted increasing attention in recent years due to its important application in various tasks. The existing methods for MAV detection assume that the training set and testing set have the same distribution. As a result, when deployed in new domains, the detectors would have a significant performance degradation due to domain discrepancy. In this paper, we study the problem of cross-domain MAV detection. The contributions of this paper are threefold. 1) We propose a Multi-MAV-Multi-Domain (M3D) dataset consisting of both simulation and realistic images. Compared to other existing datasets, the proposed one is more comprehensive in the sense that it covers rich scenes, diverse MAV types, and various viewing angles. A new benchmark for cross-domain MAV detection is proposed based on the proposed dataset. 2) We propose a Noise Suppression Network (NSN) based on the framework of pseudo-labeling and a large-to-small training procedure. To reduce the challenging pseudo-label noises, two novel modules are designed in this network. The first is a prior-based curriculum learning module for allocating adaptive thresholds for pseudo labels with different difficulties. The second is a masked copy-paste augmentation module for pasting truly-labeled MAVs on unlabeled target images and thus decreasing pseudo-label noises. 3) Extensive experimental results verify the superior performance of the proposed method compared to the state-of-the-art ones. In particular, it achieves mAP of 46.9%(+5.8%), 50.5%(+3.7%), and 61.5%(+11.3%) on the tasks of simulation-to-real adaptation, cross-scene adaptation, and cross-camera adaptation, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. J. Li, D. H. Ye, M. Kolsch, J. P. Wachs, and C. A. Bouman, “Fast and robust UAV to UAV detection and tracking from video,” IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp. 1519–1531, 2021.
  2. C. Wang, J. Tian, J. Cao, and X. Wang, “Deep learning-based UAV detection in pulse-doppler radar,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–12, 2021.
  3. B. K. Isaac-Medina, M. Poyser, D. Organisciak, C. G. Willcocks, T. P. Breckon, and H. P. Shum, “Unmanned aerial vehicle visual detection and tracking using deep neural networks: A performance benchmark,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1223–1232, 2021.
  4. M. Pavliv, F. Schiano, C. Reardon, D. Floreano, and G. Loianno, “Tracking and relative localization of drone swarms with a vision-based headset,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1455–1462, 2021.
  5. Y. Zheng, C. Zheng, X. Zhang, F. Chen, Z. Chen, and S. Zhao, “Detection, localization, and tracking of multiple MAVs with panoramic stereo camera networks,” IEEE Transactions on Automation Science and Engineering, 2022.
  6. S. Jamil, M. Rahman, A. Ullah, S. Badnava, M. Forsat, and S. S. Mirjavadi, “Malicious UAV detection using integrated audio and visual features for public safety applications,” Sensors, vol. 20, no. 14, p. 3923, 2020.
  7. Y. Chen, P. Aggarwal, J. Choi, and C.-C. J. Kuo, “A deep learning approach to drone monitoring,” in 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pp. 686–691, IEEE, 2017.
  8. J. Zhao, J. Zhang, D. Li, and D. Wang, “Vision-based anti-UAV detection and tracking,” IEEE Transactions on Intelligent Transportation Systems, 2022.
  9. H. Sun, J. Yang, J. Shen, D. Liang, L. Ning-Zhong, and H. Zhou, “TIB-Net: Drone detection network with tiny iterative backbone,” IEEE Access, vol. 8, pp. 130697–130707, 2020.
  10. Y. Zheng, Z. Chen, D. Lv, Z. Li, Z. Lan, and S. Zhao, “Air-to-air visual detection of micro-UAVs: An experimental evaluation of deep learning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 1020–1027, 2021.
  11. K. Tian, C. Zhang, Y. Wang, S. Xiang, and C. Pan, “Knowledge mining and transferring for domain adaptive object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9133–9142, 2021.
  12. L. Zhao and L. Wang, “Task-specific inconsistency alignment for domain adaptive object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14217–14226, 2022.
  13. J. Ye, C. Fu, G. Zheng, D. P. Paudel, and G. Chen, “Unsupervised domain adaptation for nighttime aerial tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8896–8905, 2022.
  14. Y.-J. Li, X. Dai, C.-Y. Ma, Y.-C. Liu, K. Chen, B. Wu, Z. He, K. Kitani, and P. Vajda, “Cross-domain adaptive teacher for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7581–7590, 2022.
  15. J. Deng, W. Li, Y. Chen, and L. Duan, “Unbiased mean teacher for cross-domain object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4091–4101, 2021.
  16. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232, 2017.
  17. Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain adaptive Faster R-CNN for object detection in the wild,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3339–3348, 2018.
  18. J. Deng, D. Xu, W. Li, and L. Duan, “Harmonious teacher for cross-domain object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23829–23838, 2023.
  19. R. Ramamonjison, A. Banitalebi-Dehkordi, X. Kang, X. Bai, and Y. Zhang, “SimROD: A simple adaptation method for robust object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3570–3579, 2021.
  20. N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa, “Cross-domain weakly-supervised object detection through progressive domain adaptation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 5001–5009, 2018.
  21. A. Coluccia, A. Fascista, A. Schumann, L. Sommer, A. Dimou, D. Zarpalas, M. Méndez, D. De la Iglesia, I. González, J.-P. Mercier, et al., “Drone vs. bird detection: Deep learning algorithms and results from a grand challenge,” Sensors, vol. 21, no. 8, p. 2824, 2021.
  22. N. Jiang, K. Wang, X. Peng, X. Yu, Q. Wang, J. Xing, G. Li, Q. Ye, J. Jiao, Z. Han, et al., “Anti-UAV: a large-scale benchmark for vision-based UAV tracking,” IEEE Transactions on Multimedia, 2021.
  23. A. Sanders, An introduction to Unreal engine 4. AK Peters/CRC Press, 2016.
  24. X. Lu, Q. Li, B. Li, and J. Yan, “Mimicdet: bridging the gap between one-stage and two-stage object detection,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, pp. 541–557, Springer, 2020.
  25. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” Advances in Neural Information Processing Systems, vol. 28, 2015.
  26. J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv:1804.02767, 2018.
  27. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv preprint arXiv:2004.10934, 2020.
  28. T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” in Proceedings of the IEEE international conference on computer vision, pp. 2980–2988, 2017.
  29. Z. Tian, C. Shen, H. Chen, and T. He, “Fcos: Fully convolutional one-stage object detection,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 9627–9636, 2019.
  30. K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet: Keypoint triplets for object detection,” in Proceedings of the IEEE/CVF international conference on computer vision, pp. 6569–6578, 2019.
  31. J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,” Advances in neural information processing systems, vol. 29, 2016.
  32. Z. Cai and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154–6162, 2018.
  33. N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection with transformers,” in European conference on computer vision, pp. 213–229, Springer, 2020.
  34. M. Vrba and M. Saska, “Marker-less micro aerial vehicle detection and localization using convolutional neural networks,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2459–2466, 2020.
  35. A. Rozantsev, V. Lepetit, and P. Fua, “Detecting flying objects using a single moving camera,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 5, pp. 879–892, 2016.
  36. M. W. Ashraf, W. Sultani, and M. Shah, “Dogfight: detecting drones from drones videos,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7067–7076, 2021.
  37. Y. Li, D. Yuan, M. Sun, H. Wang, X. Liu, and J. Liu, “A global-local tracking framework driven by both motion and appearance for infrared anti-uav,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3025–3034, 2023.
  38. T. Nguyen, S. S. Shivakumar, I. D. Miller, J. Keller, E. S. Lee, A. Zhou, T. Özaslan, G. Loianno, J. H. Harwood, J. Wozencraft, et al., “Mavnet: An effective semantic segmentation micro-network for mav-based tasks,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 3908–3915, 2019.
  39. A. Yavariabdi, H. Kusetogullari, T. Celik, and H. Cicek, “FastUAV-net: A multi-UAV detection algorithm for embedded platforms,” Electronics, vol. 10, no. 6, p. 724, 2021.
  40. Y. Jiao, H. Yao, and C. Xu, “San: selective alignment network for cross-domain pedestrian detection,” IEEE Transactions on Image Processing, vol. 30, pp. 2155–2167, 2021.
  41. M. Faraki, X. Yu, Y.-H. Tsai, Y. Suh, and M. Chandraker, “Cross-domain similarity learning for face recognition in unseen domains,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15292–15301, 2021.
  42. R. Tao, H. Li, T. Wang, Y. Wei, Y. Ding, B. Jin, H. Zhi, X. Liu, and A. Liu, “Exploring endogenous shift for cross-domain detection: A large-scale benchmark and perturbation suppression network,” in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21157–21167, IEEE, 2022.
  43. G. Mattolin, L. Zanella, E. Ricci, and Y. Wang, “Confmix: Unsupervised domain adaptation for object detection via confidence-based mixing,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 423–433, 2023.
  44. W. Li, X. Liu, X. Yao, and Y. Yuan, “Scan: Cross domain object detection with semantic conditioned adaptation,” in AAAI, vol. 6, p. 7, 2022.
  45. W. Li, X. Liu, and Y. Yuan, “Sigma: Semantic-complete graph matching for domain adaptive object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5291–5300, 2022.
  46. P. Oza, V. A. Sindagi, V. V. Sharmini, and V. M. Patel, “Unsupervised domain adaptation of object detectors: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.
  47. K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Strong-weak distribution alignment for adaptive object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6956–6965, 2019.
  48. Q. Cai, Y. Pan, C.-W. Ngo, X. Tian, L. Duan, and T. Yao, “Exploring object relation in mean teacher for cross-domain detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11457–11466, 2019.
  49. H. Wang, S. Liao, and L. Shao, “Afan: Augmented feature alignment network for cross-domain object detection,” IEEE Transactions on Image Processing, vol. 30, pp. 4046–4056, 2021.
  50. A. RoyChowdhury, P. Chakrabarty, A. Singh, S. Jin, H. Jiang, L. Cao, and E. Learned-Miller, “Automatic adaptation of object detectors to new domains using self-training,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 780–790, 2019.
  51. M. Khodabandeh, A. Vahdat, M. Ranjbar, and W. G. Macready, “A robust learning approach to domain adaptive object detection,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 480–490, 2019.
  52. X. Liu, W. Li, Q. Yang, B. Li, and Y. Yuan, “Towards robust adaptive object detection under noisy annotations,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14207–14216, 2022.
  53. Y. Gao, K.-Y. Lin, J. Yan, Y. Wang, and W.-S. Zheng, “Asyfod: An asymmetric adaptation paradigm for few-shot domain adaptive object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3261–3271, 2023.
  54. W. Zhou, D. Du, L. Zhang, T. Luo, and Y. Wu, “Multi-granularity alignment domain adaptation for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9581–9590, 2022.
  55. T. Kim, M. Jeong, S. Kim, S. Choi, and C. Kim, “Diversify and match: A domain adaptive representation learning paradigm for object detection,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12456–12465, 2019.
  56. R. Gong, W. Li, Y. Chen, and L. V. Gool, “Dlow: Domain flow for adaptation and generalization,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2477–2486, 2019.
  57. S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu, and S.-H. Lai, “Auggan: Cross domain adaptation with gan-based data augmentation,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 718–731, 2018.
  58. M. Xu, Z. Zhang, H. Hu, J. Wang, L. Wang, F. Wei, X. Bai, and Z. Liu, “End-to-end semi-supervised object detection with soft teacher,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3060–3069, 2021.
  59. H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “Mixup: Beyond empirical risk minimization,” in International Conference on Learning Representations, 2018.
  60. Y. Gao, L. Yang, Y. Huang, S. Xie, S. Li, and W.-S. Zheng, “Acrofod: An adaptive method for cross-domain few-shot object detection,” in European Conference on Computer Vision, pp. 673–690, Springer, 2022.
  61. M. He, Y. Wang, J. Wu, Y. Wang, H. Li, B. Li, W. Gan, W. Wu, and Y. Qiao, “Cross domain object detection by target-perceived dual branch distillation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9570–9580, 2022.
  62. Y. Zhang, P. David, and B. Gong, “Curriculum domain adaptation for semantic segmentation of urban scenes,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2020–2030, 2017.
  63. P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum self-paced learning for cross-domain object detection,” Computer Vision and Image Understanding, vol. 204, p. 103166, 2021.
  64. P. Soviany, R. T. Ionescu, P. Rota, and N. Sebe, “Curriculum learning: A survey,” International Journal of Computer Vision, pp. 1–40, 2022.
  65. J. Wang and X.-L. Zhang, “Improving pseudo labels with intra-class similarity for unsupervised domain adaptation,” Pattern Recognition, vol. 138, p. 109379, 2023.
  66. M. L. Pawelczyk and M. Wojtyra, “Real world object detection dataset for quadcopter unmanned aerial vehicle detection,” IEEE Access, vol. 8, pp. 174394–174409, 2020.
  67. V. Walter, M. Vrba, and M. Saska, “On training datasets for machine learning-based visual relative localization of micro-scale UAVs,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 10674–10680, IEEE, 2020.
  68. S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual and physical simulation for autonomous vehicles,” in Field and Service Robotics: Results of the 11th International Conference, pp. 621–635, Springer, 2018.
  69. A. Loquercio, E. Kaufmann, R. Ranftl, A. Dosovitskiy, V. Koltun, and D. Scaramuzza, “Deep drone racing: From simulation to reality with domain randomization,” IEEE Transactions on Robotics, vol. 36, no. 1, pp. 1–14, 2019.
  70. C. Rui, G. Youwei, Z. Huafei, and J. Hongyu, “A comprehensive approach for UAV small object detection with simulation-based transfer learning and adaptive fusion,” arXiv preprint arXiv:2109.01800, 2021.
  71. B. Zhang, Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, and T. Shinozaki, “Flexmatch: Boosting semi-supervised learning with curriculum pseudo labeling,” Advances in Neural Information Processing Systems, vol. 34, pp. 18408–18419, 2021.
  72. G. Ghiasi, Y. Cui, A. Srinivas, R. Qian, T.-Y. Lin, E. D. Cubuk, Q. V. Le, and B. Zoph, “Simple copy-paste is a strong data augmentation method for instance segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2918–2928, 2021.
  73. M. Kisantal, Z. Wojna, J. Murawski, J. Naruniec, K. Cho, et al., “Augmentation for small object detection,” in CS & IT Conference Proceedings, vol. 9, CS & IT Conference Proceedings, 2019.
  74. X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jagersand, “U2-Net: Going deeper with nested U-structure for salient object detection,” Pattern Recognition, vol. 106, p. 107404, 2020.
  75. P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” in ACM SIGGRAPH 2003 Papers, pp. 313–318, 2003.
  76. S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization strategy to train strong classifiers with localizable features,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032, 2019.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com