Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Phase separation dynamics in a symmetric binary mixture of ultrasoft particles (2403.16663v1)

Published 25 Mar 2024 in cond-mat.soft and cond-mat.stat-mech

Abstract: Phase separation plays an role in determining the self-assembly of biological and soft-matter systems. In biological systems, liquid-liquid phase separation inside a cell leads to the formation of various macromolecular aggregates. The interaction among these aggregates is soft, i.e., these can significantly overlap at a small energy cost. From the computer simulation point of view, these complex macromolecular aggregates are generally modeled by the so-called soft particles. The effective interaction between two particles is defined via the generalized exponential potential (GEM-n) with n = 4. Here, using molecular dynamics simulations, we study the phase separation dynamics of a size-symmetric binary mixture of ultrasoft particles. We find that when the mixture is quenched to a lower temperature below the critical temperature, the two components spontaneously start to separate. Domains of the two components form, and the equal-time order parameter reveals that the domains grow in a power-law manner with exponent 1/3, which is consistent with the Lifshitz-Slyozov law for conserved systems. Further, the static structure factor shows a power-law decay with exponent 4 consistent with the Porod law.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. A. A. Hyman, C. A. Weber, and F. Jülicher, Liquid-liquid phase separation in biology, Annual Review of Cell and Developmental Biology 30, 39 (2014), pMID: 25288112.
  2. F. S. Bates, Polymer-polymer phase behavior, Science 251, 898 (1991).
  3. S. H. L. Klapp, D. J. Diestler, and M. Schoen, Why are effective potentials ‘soft’?, Journal of Physics: Condensed Matter 16, 7331 (2004).
  4. B. M. Mladek, P. Charbonneau, and D. Frenkel, Phase coexistence of cluster crystals: beyond the gibbs phase rule, Phys. Rev. Lett. 99, 235702 (2007b).
  5. K. Zhang, P. Charbonneau, and B. M. Mladek, Reentrant and isostructural transitions in a cluster-crystal former, Phys. Rev. Lett. 105, 245701 (2010).
  6. G. P. Shrivastav and G. Kahl, On the stress overshoot in cluster crystals under shear, Condensed Matter Physics 23, 23801 (2020).
  7. G. P. Shrivastav and G. Kahl, On the yielding of a point-defect-rich model crystal under shear: insights from molecular dynamics simulations, Soft Matter 17, 8536 (2021).
  8. D. Coslovich, L. Strauss, and G. Kahl, Hopping and microscopic dynamics of ultrasoft particles in cluster crystals, Soft Matter 7, 2127 (2011).
  9. D. Coslovich, M. Bernabei, and A. J. Moreno, Cluster glasses of ultrasoft particles, The Journal of Chemical Physics 137, 184904 (2012).
  10. F. Tscharnutter and G. Kahl, Ordered structures formed by a symmetric, binary mixture of ultrasoft particles, Journal of Physics (Condensed Matter)  ,   (in preparation).
  11. A. Scacchi, M. Sammalkorpi, and T. Ala-Nissila, Self-assembly of binary solutions to complex structures, The Journal of Chemical Physics 155, 014904 (2021).
  12. P. G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends, The Journal of Chemical Physics 72, 4756 (1980).
  13. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117, 1 (1995).
  14. S. Puri, Kinetics of phase transitions, Phase Transitions 77, 407 (2004).
  15. I. Lifshitz and V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, Journal of Physics and Chemistry of Solids 19, 35 (1961).
  16. S. Ahmad, S. K. Das, and S. Puri, Crossover in growth laws for phase-separating binary fluids: Molecular dynamics simulations, Phys. Rev. E 85, 031140 (2012).
  17. J. Midya and S. K. Das, Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition, The Journal of Chemical Physics 146, 044503 (2017).
  18. S. Majumder and S. K. Das, Diffusive domain coarsening: Early time dynamics and finite-size effects, Phys. Rev. E 84, 021110 (2011).
  19. R. Bhattacharyya and B. Sen Gupta, Phase separation and aging dynamics of binary liquids in porous media, EPL 140, 47002 (2022).
  20. Y. Oono and S. Puri, Large wave number features of form factors for phase transition kinetics, Modern Physics Letters B 2, 861 (1988).
  21. G. P. Shrivastav, V. Banerjee, and S. Puri, Non-porod behavior in systems with rough morphologies, The European Physical Journal E 37, 10.1140/epje/i2014-14098-9 (2014).
  22. T. Soddemann, B. Dünweg, and K. Kremer, Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations, Phys. Rev. E 68, 046702 (2003).
  23. P. Espanol and P. Warren, Statistical mechanics of dissipative particle dynamics, EPL 30, 191 (1995).
  24. P. Hoogerbrugge and J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, EPL 19, 155 (1992).
  25. J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic Press, London, 1986).
  26. G. P. Shrivastav and G. Kahl, On the stress overshoot in cluster crystals under shear, Condens. Matter Phys. 23, 23801:1 (20202).
  27. At this point we note that the actual size of the small cells is essentially arbitrary; this size can be fine-tuned – if required – in order to obtain good quality data at a coarse-grained level without compromising the results.
  28. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977).
  29. A. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: