Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Imaging quantum interference in a monolayer Kitaev quantum spin liquid candidate (2403.16553v2)

Published 25 Mar 2024 in cond-mat.str-el

Abstract: Single atomic defects are prominent windows to look into host quantum states because collective responses from the host states emerge as localized states around the defects. Friedel oscillations and Kondo clouds in Fermi liquids are quintessential examples. However, the situation is quite different for quantum spin liquid (QSL), an exotic state of matter with fractionalized quasiparticles and topological order arising from a profound impact of quantum entanglement. Elucidating the underlying local electronic property has been challenging due to the charge neutrality of fractionalized quasiparticles and the insulating nature of QSLs. Here, using spectroscopic-imaging scanning tunneling microscopy, we report atomically resolved images of monolayer $\alpha-RuCl_3$, the most promising Kitaev QSL candidate, on metallic substrates. We find quantum interference in the insulator manifesting as incommensurate and decaying spatial oscillations of the local density of states around defects with a characteristic bias dependence. The oscillation differs from any known spatial structures in its nature and does not exist in other Mott insulators, implying it is an exotic oscillation involved with excitations unique to $\alpha-RuCl_3$. Numerical simulations suggest that the observed oscillation can be reproduced by assuming that itinerant Majorana fermions of Kitaev QSL are scattered across the Majorana Fermi surface. The oscillation provides a new approach to exploring Kitaev QSLs through the local response against defects like Friedel oscillations in metals.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. J. Friedel, The distribution of electrons round impurities in monovalent metals, Philos. Mag. J. Sci. 43, 153 (1952).
  2. J. Kondo, Resistance Minimum in Dilute Magnetic Alloys, Prog. Theor. Phys. 32, 37 (1964).
  3. L. Savary and L. Balents, Quantum spin liquids: a review, Rep. Prog. Phys. 80, 016502 (2016).
  4. A. J. Willans, J. T. Chalker, and R. Moessner, Disorder in a Quantum Spin Liquid: Flux Binding and Local Moment Formation, Phys. Rev. Lett. 104, 237203 (2010).
  5. M. Vojta, A. K. Mitchell, and F. Zschocke, Kondo Impurities in the Kitaev Spin Liquid: Numerical Renormalization Group Solution and Gauge-Flux-Driven Screening, Phys. Rev. Lett. 117, 037202 (2016).
  6. S. D. Das, K. Dhochak, and V. Tripathi, Kondo route to spin inhomogeneities in the honeycomb Kitaev model, Phys. Rev. B 94, 024411 (2016).
  7. P. Ribeiro and P. A. Lee, Magnetic impurity in a U⁢(1)𝑈1U(1)italic_U ( 1 ) spin liquid with a spinon Fermi surface, Phys. Rev. B 83, 235119 (2011).
  8. D. F. Mross and T. Senthil, Charge Friedel oscillations in a Mott insulator, Phys. Rev. B 84, 041102(R) (2011).
  9. Y. Motome and J. Nasu, Hunting Majorana fermions in Kitaev magnets, J. Phys. Soc. Jpn. 89, 012002 (2020).
  10. A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006).
  11. G. Jackeli and G. Khaliullin, Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models, Phys. Rev. Lett. 102, 017205 (2009).
  12. K. Momma and F. Izumi, VESTA for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Cryst 44, 1272 (2011).
  13. R. G. Pereira and R. Egger, Electrical access to Ising anyons in Kitaev spin liquids, Phys. Rev. Lett. 125, 227202 (2020).
  14. E. J. König, M. T. Randeria, and B. Jäck, Tunneling spectroscopy of quantum spin liquids, Phys. Rev. Lett. 125, 267206 (2020).
  15. M. Udagawa, S. Takayoshi, and T. Oka, Scanning tunneling microscopy as a single Majorana detector of Kitaev’s chiral spin liquid, Phys. Rev. Lett. 126, 127201 (2021).
  16. S.-H. Jang, Y. Kato, and Y. Motome, Vortex creation and control in the Kitaev spin liquid by local bond modulations, Phys. Rev. B 104, 085142 (2021).
  17. C. Price and N. B. Perkins, Finite-temperature phase diagram of the classical Kitaev-Heisenberg model, Phys. Rev. B 88, 024410 (2013).
  18. Y. Imry and S.-k. Ma, Random-Field Instability of the Ordered State of Continuous Symmetry, Phys. Rev. Lett. 35, 1399 (1975).
  19. D. Takikawa and S. Fujimoto, Impact of off-diagonal exchange interactions on the Kitaev spin-liquid state of \ceα-RuCl3, Phys. Rev. B 99, 224409 (2019).
  20. K. Shiozaki, M. Sato, and K. Gomi, Atiyah-Hirzebruch spectral sequence in band topology: General formalism and topological invariants for 230 space groups, Phys. Rev. B 106, 165103 (2022).
Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: