Applied Category Theory in the Wolfram Language using Categorica I: Diagrams, Functors and Fibrations (2403.16269v1)
Abstract: This article serves as a preliminary introduction to the design of a new, open-source applied and computational category theory framework, named Categorica, built on top of the Wolfram Language. Categorica allows one to configure and manipulate abstract quivers, categories, groupoids, diagrams, functors and natural transformations, and to perform a vast array of automated abstract algebraic computations using (arbitrary combinations of) the above structures; to manipulate and abstractly reason about arbitrary universal properties, including products, coproducts, pullbacks, pushouts, limits and colimits; and to manipulate, visualize and compute with strict (symmetric) monoidal categories, including full support for automated string diagram rewriting and diagrammatic theorem-proving. In so doing, Categorica combines the capabilities of an abstract computer algebra framework (thus allowing one to compute directly with epimorphisms, monomorphisms, retractions, sections, spans, cospans, fibrations, etc.) with those of a powerful automated theorem-proving system (thus allowing one to convert universal properties and other abstract constructions into (higher-order) equational logic statements that can be reasoned about and proved using standard automated theorem-proving methods, as well as to prove category-theoretic statements directly using purely diagrammatic methods). In this first of two articles introducing the design of the framework, we shall focus principally upon its handling of quivers, categories, diagrams, groupoids, functors and natural transformations, including demonstrations of both its algebraic manipulation and theorem-proving capabilities in each case.
- S. Eilenberg and S. Mac Lane (1942), “Group Extensions and Homology”, Annals of Mathematics 43 (4): 757–831. https://www.jstor.org/stable/1968966.
- S. Eilenberg and S. Mac Lane (1945), “General Theory of Natural Equivalences”, Transactions of the American Mathematical Society 58 (2): 231–294. https://www.jstor.org/stable/1990284.
- J-P. Serre (1955), “Faisceaux Algebriques Coherents”, Annals of Mathematics 61 (2): 197–278. https://www.jstor.org/stable/1969915.
- A. Grothendieck (1957), “Sur quelques points d’algèbre homologique, I”, Tôhoku Mathematical Journal 9 (2): 119–221. https://projecteuclid.org/journals/tohoku-mathematical-journal/volume-9/issue-2/Sur-quelques-points-dalgèbre-homologique-I/10.2748/tmj/1178244839.full.
- S. Abramsky and B. Coecke (2004), “A categorical semantics of quantum protocols”, Proceedings of the 19th IEEE Symposium on Logic in Computer Science. Turku, Finland: 415–425. https://arxiv.org/abs/quant-ph/0402130.
- S. Abramsky and B. Coecke (2008), “Categorical quantum mechanics”, Handbook of Quantum Logic and Quantum Structures, K. Engesser, D. M. Gabbay, D. Lehmann (eds): 261–323. Elsevier. https://arxiv.org/abs/0808.1023.
- B. Coecke and R. Duncan (2008), “Interacting Quantum Observables”, International Colloquium on Automata, Languages and Progamming, Lecture Notes in Computer Science 5126: 298–310. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-540-70583-3_25.
- B. Coecke and R. Duncan (2009), “Interacting Quantum Observables: Categorical Algebra and Diagrammatics”, New Journal of Physics 13 (4): 043016. https://arxiv.org/abs/0906.4725.
- B. Coecke, M. Sadrzadeh and S. Clark (2010), “Mathematical Foundations for a Compositional Distribution Model of Meaning”, Linguistic Analysis 36 (Lambek Festschrift): 345–384. https://arxiv.org/abs/1003.4394.
- M. Capucci, B. Gavranović, J. Hedges and E. F. Rischel (2021), “Towards Foundations of Categorical Cybernetics”, Proceedings of Applied Category Theory 2021, Electronic Proceedings in Theoretical Computer Science 372: 235–248. https://arxiv.org/abs/2105.06332v2.
- G. S. H. Cruttwell, B. Gavranović, N. Ghani, P. Wilson and F. Zanasi (2022), “Categorical Foundations of Gradient-Based Learning”, European Symposium on Programming 2022, Lecture Notes in Computer Science 13240: 1–28. Springer, Cham. https://arxiv.org/abs/2103.01931.
- J. C. Baez and B. S. Pollard (2017), “A Compositional Framework for Reaction Networks”, Reviews in Mathematical Physics 29 (9): 1750028. https://arxiv.org/abs/1704.02051.
- J. C. Baez and J. Master (2020), “Open Petri Nets”, Mathematical Structures in Computer Science 30 (3): 314–341. https://arxiv.org/abs/1808.05415v4.
- J. Gorard (2022), “A Functorial Perspective on (Multi)computational Irreducibility”, arXiv preprint: https://arxiv.org/abs/2301.04690.
- J. Gorard (2018), “The Slowdown Theorem: A Lower Bound for Computational Irreducibility in Physical Systems”, Complex Systems 27 (2): 177–185. https://www.complex-systems.com/abstracts/v27_i02_a05/.
- D. I. Spivak (2012), “Functorial Data Migration”, Information and Computation 217: 31–51. https://arxiv.org/abs/1009.1166.
- B. Fong and D. I. Spivak (2019), An Invitation to Applied Category Theory: Seven Sketches in Compositionality. Cambridge University Press. ISBN: 978-1108711821. https://arxiv.org/abs/1803.05316.
- M. Halter, E. Patterson, A. Baas and J. Fairbanks (2020), “Compositional Scientific Computing with Catlab and SemanticModels”, arXiv preprint: https://arxiv.org/abs/2005.04831.
- A. Kissinger and V. Zamdhiev (2015), “Quantomatic: A Proof Assistant for Diagrammatic Reasoning”, International Conference on Automated Deduction - CADE-25: 326–336. https://arxiv.org/abs/1503.01034.
- P. Sobociński, P. W. Wilson and F. Zanasi (2019), “Cartographer: A Tool for String Diagrammatic Reasoning (Tool Papear), 8th Conference on Algebra and Coalgebra in Computer Science - CALCO 2019: 20:1–20:7. https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2019.20.
- A. Kissinger and J. van de Wetering (2019), “PyZX: Large Scale Automated Diagrammatic Reasoning”, 16th International Conference on Quantum Physics and Logic 318: 229–241. https://arxiv.org/abs/1904.04735.
- J. Gorard (2020), “Some Relativistic and Gravitational Properties of the Wolfram Model”, Complex Systems 29 (2): 599–654. https://arxiv.org/abs/2004.14810.
- J. Gorard (2020), “Some Quantum Mechanical Properties of the Wolfram Model”, Complex Systems 29 (2): 537–598. https://www.complex-systems.com/abstracts/v29_i02_a02/.
- J. Gorard (2020), “Algorithmic Causal Sets and the Wolfram Model”, arXiv preprint: https://arxiv.org/abs/2011.12174.
- E. Ehrig, M. Pfender and H. J. Schneider (1973), “Graph-grammars: An algebraic approach”, IEEE Conference Record of the 14th Annual Symposium on Switching and Automata Theory: 167–180. https://ieeexplore.ieee.org/document/4569741.
- A. Habel, J. Müller and D. Plump (2001), “Double-pushout graph transformation revisited”, Mathematical Structures in Computer Science 11 (5): 637–688. https://www.cambridge.org/core/journals/mathematical-structures-in-computer-science/article/doublepushout-graph-transformation-revisited/AF02050525390437E1DF746DE4459926.
- J. Gorard, M. Namuduri and X. D. Arsiwalla (2020), “ZX-Calculus and Extended Hypergraph Rewriting Systems I: A Multiway Approach to Categorical Quantum Information Theory”, arXiv preprint: https://arxiv.org/abs/2010.02752.
- J. Gorard, M. Namuduri and X. D. Arsiwalla (2021), “ZX-Calculus and Extended Wolfram Model Systems II: Fast Diagrammatic Reasoning with an Application to Quantum Circuit Simplification”, arXiv preprint: https://arxiv.org/abs/2103.15820.
- J. Gorard, M. Namuduri and X. D. Arsiwalla (2021), “Fast Automated Reasoning over String Diagrams using Multiway Causal Structure”, arXiv preprint: https://arxiv.org/abs/2105.04057.
- J. Gorard (2016), “Uniqueness Trees: A Possible Polynomial Approach to the Graph Isomorphism Problem”, arXiv preprint: https://arxiv.org/abs/1606.06399.
- K. Borsuk (1947), “On The Topology of Retracts”, Annals of Mathematics 48 (4): 1082–1094. https://www.jstor.org/stable/1969394.
- R. Brown (2006), Topology and Groupoids. Booksurge Publishing. ISBN: 978-1419627224.
- A. Grothendieck (1959), “Technique de descente et théorèmes d’existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats”, Séminaire Bourbaki 5 (Exposé 190): 299–327. http://www.numdam.org/item/SB_1958-1960__5__299_0/.
- J. W. Gray (1966), “Fibred and Cofibred Categories”, Proceedings of the Conference on Categorical Algebra, S. Eilenberg, D. K. Harrison, S. Mac Lane, H. Röhrl (eds): 21–83. Springer, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-99902-4_2.
- J. Gorard (2023), “Computational General Relativity in the Wolfram Language using Gravitas I: Symbolic and Analytic Computation”, arXiv preprint: https://arxiv.org/abs/2308.07508.
- J. Gorard (2024), “Computational General Relativity in the Wolfram Language using Gravitas II: ADM Formalism and Numerical Relativity”, arXiv preprint: https://arxiv.org/abs/2401.14209.
- J. Gorard (2021), “Hypergraph Discretization of the Cauchy Problem in General Relativity via Wolfram Model Evolution”, arXiv preprint: https://arxiv.org/abs/2102.09363.
- J. Gorard (2023), “Non-Vacuum Solutions, Gravitational Collapse and Discrete Singularity Theorems in Wolfram Model Systems”, arXiv preprint: https://arxiv.org/abs/2303.07282.
- J. Gorard (2024), “General Relativistic Hydrodynamics in Discrete Spacetime: Perfect Fluid Accretion onto Static and Spinning Black Holes”, arXiv preprint: https://arxiv.org/abs/2402.02331.
- J. Gorard and J. Dannemann-Freitag (2023), “Axiomatic Quantum Field Theory in Discrete Spacetime via Multiway Causal Structure: The Case of Entanglement Entropies”, arXiv preprint: https://arxiv.org/abs/2301.12455.
- X. D. Arsiwalla, J. Gorard and H. Elshatlawy (2021), “Homotopies in Multiway (Non-Deterministic) Rewriting Systems as n𝑛nitalic_n-Fold Categories”, arXiv preprint: https://arxiv.org/abs/2105.10822.
- X. D. Arsiwalla and J. Gorard (2021), “Pregeometric Spaces from Wolfram Model Rewriting Systems as Homotopy Types”, arXiv preprint: https://arxiv.org/abs/2111.03460.
- S. Mac Lane (1963), “Natural Associativity and Commutativity”, Rice Institute Pamphlet - Rice University Studies 49 (4): 28–46. https://repository.rice.edu/items/055560bd-a742-4571-b34e-c4829c92da16.
- G. M. Kelly (1964), “On MacLane’s conditions for coherence of natural associativities, commutativities, etc.”, Journal of Algebra 1 (4): 397–402. https://www.sciencedirect.com/science/article/pii/0021869364900183
- A. Joyal and R. Street (1986), “Braided monoidal categories”, Macquarie Mathematics Reports (860081). http://web.science.mq.edu.au/~street/JS1.pdf.
- V. Chari and A. Pressley (1995), A Guide to Quantum Groups. Cambridge University Press. ISBN: 978-0521558846.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.