Papers
Topics
Authors
Recent
2000 character limit reached

A Survey on Self-Supervised Graph Foundation Models: Knowledge-Based Perspective (2403.16137v3)

Published 24 Mar 2024 in cs.LG and cs.SI

Abstract: Graph self-supervised learning (SSL) is now a go-to method for pre-training graph foundation models (GFMs). There is a wide variety of knowledge patterns embedded in the graph data, such as node properties and clusters, which are crucial to learning generalized representations for GFMs. However, existing surveys of GFMs have several shortcomings: they lack comprehensiveness regarding the most recent progress, have unclear categorization of self-supervised methods, and take a limited architecture-based perspective that is restricted to only certain types of graph models. As the ultimate goal of GFMs is to learn generalized graph knowledge, we provide a comprehensive survey of self-supervised GFMs from a novel knowledge-based perspective. We propose a knowledge-based taxonomy, which categorizes self-supervised graph models by the specific graph knowledge utilized. Our taxonomy consists of microscopic (nodes, links, etc.), mesoscopic (context, clusters, etc.), and macroscopic knowledge (global structure, manifolds, etc.). It covers a total of 9 knowledge categories and more than 25 pretext tasks for pre-training GFMs, as well as various downstream task generalization strategies. Such a knowledge-based taxonomy allows us to re-examine graph models based on new architectures more clearly, such as graph LLMs, as well as provide more in-depth insights for constructing GFMs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: