2000 character limit reached
Positive mass and isoperimetry for continuous metrics with nonnegative scalar curvature (2403.15972v2)
Published 24 Mar 2024 in math.DG, math-ph, math.AP, math.MG, and math.MP
Abstract: This paper deals with quasi-local isoperimetric versions of the positive mass theorem on $3$-manifolds endowed with continuous complete metrics having nonnegative scalar curvature in a suitable weak sense. As a corollary, we derive existence results for isoperimetric sets in such low regularity setting. Our main tool is a new local version of the weak inverse mean curvature flow enjoying $C0$-stable quantitative estimates.
- V. Agostiniani, L. Mazzieri and F. Oronzio “A Green’s Function Proof of the Positive Mass Theorem” In Comm. Math. Phys. 405.2, 2024, pp. Paper no. 54 DOI: 10.1007/s00220-024-04941-8
- L. Ambrosio “Fine properties of sets of finite perimeter in doubling metric measure spaces” Calculus of variations, nonsmooth analysis and related topics In Set-Valued Anal. 10.2-3, 2002, pp. 111–128 DOI: 10.1023/A:1016548402502
- L. Ambrosio and S. Di Marino “Equivalent definitions of BV𝐵𝑉BVitalic_B italic_V space and of total variation on metric measure spaces” In J. Funct. Anal. 266.7, 2014, pp. 4150–4188 DOI: 10.1016/j.jfa.2014.02.002
- G. Antonelli, M. Fogagnolo and M. Pozzetta “The isoperimetric problem on Riemannian manifolds via Gromov–Hausdorff asymptotic analysis” In Commun. Contemp. Math. 26.1, 2024, pp. Paper no. 2250068 DOI: 10.1142/S0219199722500687
- G. Antonelli, S. Nardulli and M. Pozzetta “The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds” In ESAIM Control Optim. Calc. Var. 28, 2022, pp. Paper No. 57\bibrangessep32 DOI: 10.1051/cocv/2022052
- G. Antonelli, E. Pasqualetto and M. Pozzetta “Isoperimetric sets in spaces with lower bounds on the Ricci curvature” In Nonlinear Anal. 220, 2022, pp. Paper No. 112839\bibrangessep59 DOI: 10.1016/j.na.2022.112839
- “Topological regularity of isoperimetric sets in PI spaces having a deformation property” In Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, pp. 1–23 DOI: 10.1017/prm.2023.105
- R.H. Bamler “A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature” In Math. Res. Lett. 23.2, 2016, pp. 325–337 DOI: 10.4310/MRL.2016.v23.n2.a2
- R. Bartnik “The mass of an asymptotically flat manifold” In Comm. Pure Appl. Math. 39.5, 1986, pp. 661–693 DOI: 10.1002/cpa.3160390505
- “Isoperimetric sets in nonnegative scalar curvature and their role through various concepts of mass” Accepted in Springer INdAM series: Anisotropic Isoperimetric Problems & Related Topics, 2023 arXiv:2305.03643
- L. Benatti, M. Fogagnolo and L. Mazzieri “Minkowski Inequality on complete Riemannian manifolds with nonnegative Ricci curvature” To appear in An.& PDEs, 2022 arXiv:2101.06063
- L. Benatti, M. Fogagnolo and L. Mazzieri “On the Isoperimetric Riemannian Penrose Inequality”, 2023 arXiv:2212.10215
- L. Benatti, A. Pluda and M. Pozzetta “Fine properties of nonlinear potentials and Geroch-type monotonicities” In preparation, 2024
- H.L. Bray “The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature” Thesis (Ph.D.)–Stanford University ProQuest LLC, Ann Arbor, MI, 1997, pp. 103 URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9810085
- H.L. Bray “Proof of the Riemannian Penrose inequality using the positive mass theorem” In J. Differential Geom. 59.2, 2001, pp. 177–267 URL: http://projecteuclid.org/euclid.jdg/1090349428
- “Harmonic functions and the mass of 3-dimensional asymptotically flat Riemannian manifolds” In J. Geom. Anal. 32.6, 2022, pp. Paper No. 184\bibrangessep29 DOI: 10.1007/s12220-022-00924-0
- S. Brendle “Scalar curvature rigidity of convex polytopes” In Invent. Math. 235.2, 2024, pp. 669–708 DOI: 10.1007/s00222-023-01229-x
- “A volume comparison theorem for asymptotically hyperbolic manifolds” In Comm. Math. Phys. 332.2, 2014, pp. 839–846 DOI: 10.1007/s00220-014-2074-1
- P. Burkhardt-Guim “Pointwise lower scalar curvature bounds for C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT metrics via regularizing Ricci flow” In Geom. Funct. Anal. 29.6, 2019, pp. 1703–1772 DOI: 10.1007/s00039-019-00514-3
- P. Burkhardt-Guim “ADM mass for C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT metrics and distortion under Ricci-DeTurck flow” In J. Reine Angew. Math. 806, 2024, pp. 187–245 DOI: 10.1515/crelle-2023-0085
- A.Y. Burtscher “Length structures on manifolds with continuous Riemannian metrics” In New York J. Math. 21, 2015, pp. 273–296 URL: http://nyjm.albany.edu:8000/j/2015/21_273.html
- P. Buser “A note on the isoperimetric constant” In Ann. Sci. École Norm. Sup. (4) 15.2, 1982, pp. 213–230 URL: http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0
- A. Carlotto, O. Chodosh and M. Eichmair “Effective versions of the positive mass theorem” In Invent. Math. 206.3, 2016, pp. 975–1016 DOI: 10.1007/s00222-016-0667-3
- J. Cheeger “Differentiability of Lipschitz functions on metric measure spaces” In Geom. Funct. Anal. 9.3, 1999, pp. 428–517
- “Incompressible hypersurface, positive scalar curvature and positive mass theorem”, 2021 arXiv:2112.14442
- “Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds” In Comm. Pure Appl. Math. 74.4, 2021, pp. 865–905 DOI: 10.1002/cpa.21981
- P. Chruściel “Boundary conditions at spatial infinity from a Hamiltonian point of view” In Topological properties and global structure of space-time (Erice, 1985) 138, NATO Adv. Sci. Inst. Ser. B: Phys. Plenum, New York, 1986, pp. 49–59
- J. Chu, M.-C. Lee and J. Zhu “Singular positive mass theorem with arbitrary ends”, 2022 arXiv:2210.08261
- “On isoperimetric surfaces in general relativity” In Pacific J. Math. 231.1, 2007, pp. 63–84 DOI: 10.2140/pjm.2007.231.63
- “Stability of Euclidean 3-space for the positive mass theorem”, 2023 arXiv:2302.07414
- “Large isoperimetric surfaces in initial data sets” In J. Differential Geom. 94.1, 2013, pp. 159–186 URL: http://projecteuclid.org/euclid.jdg/1361889064
- “Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions” In Invent. Math. 194.3, 2013, pp. 591–630 DOI: 10.1007/s00222-013-0452-5
- X.-Q. Fan, Y. Shi and L.-F. Tam “Large-sphere and small-sphere limits of the Brown-York mass” In Comm. Anal. Geom. 17.1, 2009, pp. 37–72 DOI: 10.4310/CAG.2009.v17.n1.a3
- “Normal and integral currents” In Ann. of Math. (2) 72, 1960, pp. 458–520 DOI: 10.2307/1970227
- “Minimising hulls, p𝑝pitalic_p-capacity and isoperimetric inequality on complete Riemannian manifolds” In J. Funct. Anal. 283.9, 2022, pp. Paper No. 109638\bibrangessep49 DOI: 10.1016/j.jfa.2022.109638
- A. Grigor’yan “Isoperimetric inequalities and capacities on Riemannian manifolds” In The Maz’ya anniversary collection, Vol. 1 (Rostock, 1998) 109, Oper. Theory Adv. Appl. Birkhäuser, Basel, 1999, pp. 139–153
- M. Gromov “Dirac and Plateau billiards in domains with corners” In Cent. Eur. J. Math. 12.8, 2014, pp. 1109–1156 DOI: 10.2478/s11533-013-0399-1
- “Sobolev met Poincaré” In Mem. Amer. Math. Soc. 145.688, 2000, pp. x+101 DOI: 10.1090/memo/0688
- J. Heinonen, T. Kilpeläinen and O. Martio “Nonlinear potential theory of degenerate elliptic equations” Oxford Science Publications, Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, New York, 1993, pp. vi+363
- I. Holopainen “Nonlinear potential theory and quasiregular mappings on Riemannian manifolds” In Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1990, pp. 45
- “Stability of the positive mass theorem for graphical hypersurfaces of Euclidean space” In Comm. Math. Phys. 337.1, 2015, pp. 151–169 DOI: 10.1007/s00220-014-2265-9
- L.-H. Huang, D.A. Lee and C. Sormani “Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space” In J. Reine Angew. Math. 727, 2017, pp. 269–299 DOI: 10.1515/crelle-2015-0051
- G. Huisken “Calculus of variations” Abstracts from the workshop held July 9–15, 2006, Organized by Giovanni Alberti, Robert McCann and Tristan Riviere, Oberwolfach Reports. Vol. 3, no. 3 In Oberwolfach Rep. 3.3, 2006, pp. 1879–1939 DOI: 10.4171/OWR/2006/31
- G. Huisken “Mathematical aspects of general relativity (hybrid meeting)” Abstracts from the workshop held August 29–September 4, 2021, Organized by Carla Cederbaum, Mihalis Dafermos, Jim Isenberg and Hans Ringström In Oberwolfach Rep. 18.3, 2021, pp. 2157–2267 DOI: 10.4171/owr/2021/40
- “The inverse mean curvature flow and the Riemannian Penrose inequality” In J. Differential Geom. 59.3, 2001, pp. 353–437 URL: http://projecteuclid.org/euclid.jdg/1090349447
- “Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature” In Invent. Math. 124.1-3, 1996, pp. 281–311 DOI: 10.1007/s002220050054
- “Lower semicontinuity of mass under C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT convergence and Huisken’s isoperimetric mass” In J. Reine Angew. Math. 756, 2019, pp. 227–257 DOI: 10.1515/crelle-2017-0007
- W. Jiang, W. Sheng and H. Zhang “Removable singularity of positive mass theorem with continuous metrics” In Math. Z. 302.2, 2022, pp. 839–874 DOI: 10.1007/s00209-022-03081-w
- “Erratum: “Singular solutions of the p𝑝pitalic_p-Laplace equation” [Math. Ann. 275 (1986), no. 4, 599–615; MR0859333 (87j:35096)]” In Math. Ann. 277.2, 1987, pp. 352 DOI: 10.1007/BF01457369
- “Differentiable structures on metric measure spaces: a primer” In Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16.1, 2016, pp. 41–64
- “Local Gradient Estimates of p𝑝pitalic_p-Harmonic Functions, 1/H1𝐻1/H1 / italic_H-Flow, and an Entropy Formula” In Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 42.1, 2009, pp. 1–36 DOI: 10.24033/asens.2089
- T. Kura “On the Green function of the p𝑝pitalic_p-Laplace equation for Riemannian manifolds” In Proc. Japan Acad. Ser. A Math. Sci. 75.3, 1999, pp. 37–38 URL: http://projecteuclid.org/euclid.pja/1148393962
- D.A. Lee “Geometric relativity” 201, Graduate Studies in Mathematics American Mathematical Society, Providence, RI, 2019, pp. xii+361 DOI: 10.1090/gsm/201
- “The positive mass theorem for manifolds with distributional curvature” In Comm. Math. Phys. 339.1, 2015, pp. 99–120 DOI: 10.1007/s00220-015-2414-9
- D.A. Lee, M. Lesourd and R. Unger “Density and positive mass theorems for incomplete manifolds” In Calc. Var. Partial Differential Equations 62.7, 2023, pp. Paper No. 194\bibrangessep23 DOI: 10.1007/s00526-023-02516-4
- “Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds” In J. Reine Angew. Math. 686, 2014, pp. 187–220 DOI: 10.1515/crelle-2012-0094
- M. Lesourd, R. Unger and S.-T. Yau “The Positive Mass Theorem with Arbitrary Ends” Accepted in J. Differential Geom., 2021 arXiv:¯¯2103.02744
- C. Li “A polyhedron comparison theorem for 3-manifolds with positive scalar curvature” In Invent. Math. 219.1, 2020, pp. 1–37 DOI: 10.1007/s00222-019-00895-0
- “Positive scalar curvature with skeleton singularities” In Math. Ann. 374.1-2, 2019, pp. 99–131 DOI: 10.1007/s00208-018-1753-1
- “Green’s functions, harmonic functions, and volume comparison” In J. Differential Geom. 41.2, 1995, pp. 277–318 URL: http://projecteuclid.org/euclid.jdg/1214456219
- F. Maggi “Sets of finite perimeter and geometric variational problems” An introduction to geometric measure theory 135, Cambridge Studies in Advanced Mathematics Cambridge University Press, Cambridge, 2012, pp. xx+454 DOI: 10.1017/CBO9781139108133
- L. Mari, M. Rigoli and Al.G. Setti “On the 1/H1𝐻1/H1 / italic_H-Flow by p𝑝pitalic_p-Laplace Approximation: New Estimates via Fake Distances under Ricci Lower Bounds” In American Journal of Mathematics 144.3, 2022, pp. 779–849 DOI: 10.1353/ajm.2022.0016
- “On the positive mass theorem for manifolds with corners” In Comm. Math. Phys. 313.2, 2012, pp. 425–443 DOI: 10.1007/s00220-012-1498-8
- P. Miao “Positive mass theorem on manifolds admitting corners along a hypersurface” In Adv. Theor. Math. Phys. 6.6, 2002, pp. 1163–1182 DOI: 10.4310/ATMP.2002.v6.n6.a4
- M. Miranda Jr. “Functions of bounded variation on “good” metric spaces” In Journal de Mathématiques Pures et Appliquées 82.8, 2003, pp. 975–1004
- R. Moser “The inverse mean curvature flow and p𝑝pitalic_p-harmonic functions” In J. Eur. Math. Soc. (JEMS) 9.1, 2007, pp. 77–83 DOI: 10.4171/JEMS/73
- R. Moser “Geroch monotonicity and the construction of weak solutions of the inverse mean curvature flow” In Asian J. Math. 19.2, 2015, pp. 357–376 DOI: 10.4310/AJM.2015.v19.n2.a9
- “Comparison theorems for 3D manifolds with scalar curvature bound” In Int. Math. Res. Not. IMRN, 2023, pp. 2215–2242 DOI: 10.1093/imrn/rnab307
- S. Nardulli “Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile” In Asian J. Math. 18.1, 2014, pp. 1–28 DOI: 10.4310/AJM.2014.v18.n1.a1
- C. Nerz “Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry” In Calc. Var. Partial Differential Equations 54.2, 2015, pp. 1911–1946 DOI: 10.1007/s00526-015-0849-7
- P. Petersen “Riemannian geometry” 171, Graduate Texts in Mathematics Springer, Cham, 2016, pp. xviii+499 DOI: 10.1007/978-3-319-26654-1
- A. Petrunin “Metric geometry on manifolds: two lectures”, 2021 arXiv:2010.10040
- T. Rajala “Local Poincaré inequalities from stable curvature conditions on metric spaces” In Calc. Var. Partial Differential Equations 44.3-4, 2012, pp. 477–494 DOI: 10.1007/s00526-011-0442-7
- M. Rigoli, M. Salvatori and M. Vignati “A note on p𝑝pitalic_p-subharmonic functions on complete manifolds” In Manuscripta Math. 92.3, 1997, pp. 339–359 DOI: 10.1007/BF02678198
- M. Ritoré “Isoperimetric inequalities in Riemannian manifolds” 348, Progress in Mathematics Birkhäuser/Springer, Cham, [2023] ©2023, pp. xviii+460 DOI: 10.1007/978-3-031-37901-7
- L. Saloff-Coste “Aspects of Sobolev-type inequalities” 289, London Mathematical Society Lecture Note Series Cambridge University Press, Cambridge, 2002, pp. x+190
- “On the proof of the positive mass conjecture in general relativity” In Comm. Math. Phys. 65.1, 1979, pp. 45–76 URL: http://projecteuclid.org/euclid.cmp/1103904790
- “Positive scalar curvature and minimal hypersurface singularities” In Surveys in differential geometry 2019. Differential geometry, Calabi-Yau theory, and general relativity. Part 2 24, Surv. Differ. Geom. Int. Press, Boston, MA, [2022] ©2022, pp. 441–480
- Y. Shi “The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature” In Int. Math. Res. Not. IMRN, 2016, pp. 7038–7050 DOI: 10.1093/imrn/rnv395
- “Scalar curvature and singular metrics” In Pacific J. Math. 293.2, 2018, pp. 427–470 DOI: 10.2140/pjm.2018.293.427
- M. Simon “Deformation of C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Riemannian metrics in the direction of their Ricci curvature” In Comm. Anal. Geom. 10.5, 2002, pp. 1033–1074 DOI: 10.4310/CAG.2002.v10.n5.a7
- C. Sormani “Conjectures on convergence and scalar curvature” In Perspectives in scalar curvature. Vol. 2 World Sci. Publ., Hackensack, NJ, [2023] ©2023, pp. 645–722
- E. Witten “A new proof of the positive energy theorem” In Comm. Math. Phys. 80.3, 1981, pp. 381–402 URL: http://projecteuclid.org/euclid.cmp/1103919981
- K. Xu “Isoperimetry and the properness of weak inverse mean curvature flow”, 2023 arXiv:2307.00725
- H. Yu “Isoperimetry for asymptotically flat 3-manifolds with positive ADM mass” In Math. Ann. 385.3-4, 2023, pp. 1475–1492 DOI: 10.1007/s00208-022-02366-z
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.