Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Positive mass and isoperimetry for continuous metrics with nonnegative scalar curvature (2403.15972v2)

Published 24 Mar 2024 in math.DG, math-ph, math.AP, math.MG, and math.MP

Abstract: This paper deals with quasi-local isoperimetric versions of the positive mass theorem on $3$-manifolds endowed with continuous complete metrics having nonnegative scalar curvature in a suitable weak sense. As a corollary, we derive existence results for isoperimetric sets in such low regularity setting. Our main tool is a new local version of the weak inverse mean curvature flow enjoying $C0$-stable quantitative estimates.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (85)
  1. V. Agostiniani, L. Mazzieri and F. Oronzio “A Green’s Function Proof of the Positive Mass Theorem” In Comm. Math. Phys. 405.2, 2024, pp. Paper no. 54 DOI: 10.1007/s00220-024-04941-8
  2. L. Ambrosio “Fine properties of sets of finite perimeter in doubling metric measure spaces” Calculus of variations, nonsmooth analysis and related topics In Set-Valued Anal. 10.2-3, 2002, pp. 111–128 DOI: 10.1023/A:1016548402502
  3. L. Ambrosio and S. Di Marino “Equivalent definitions of B⁢V𝐵𝑉BVitalic_B italic_V space and of total variation on metric measure spaces” In J. Funct. Anal. 266.7, 2014, pp. 4150–4188 DOI: 10.1016/j.jfa.2014.02.002
  4. G. Antonelli, M. Fogagnolo and M. Pozzetta “The isoperimetric problem on Riemannian manifolds via Gromov–Hausdorff asymptotic analysis” In Commun. Contemp. Math. 26.1, 2024, pp. Paper no. 2250068 DOI: 10.1142/S0219199722500687
  5. G. Antonelli, S. Nardulli and M. Pozzetta “The isoperimetric problem via direct method in noncompact metric measure spaces with lower Ricci bounds” In ESAIM Control Optim. Calc. Var. 28, 2022, pp. Paper No. 57\bibrangessep32 DOI: 10.1051/cocv/2022052
  6. G. Antonelli, E. Pasqualetto and M. Pozzetta “Isoperimetric sets in spaces with lower bounds on the Ricci curvature” In Nonlinear Anal. 220, 2022, pp. Paper No. 112839\bibrangessep59 DOI: 10.1016/j.na.2022.112839
  7. “Topological regularity of isoperimetric sets in PI spaces having a deformation property” In Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2023, pp. 1–23 DOI: 10.1017/prm.2023.105
  8. R.H. Bamler “A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature” In Math. Res. Lett. 23.2, 2016, pp. 325–337 DOI: 10.4310/MRL.2016.v23.n2.a2
  9. R. Bartnik “The mass of an asymptotically flat manifold” In Comm. Pure Appl. Math. 39.5, 1986, pp. 661–693 DOI: 10.1002/cpa.3160390505
  10. “Isoperimetric sets in nonnegative scalar curvature and their role through various concepts of mass” Accepted in Springer INdAM series: Anisotropic Isoperimetric Problems & Related Topics, 2023 arXiv:2305.03643
  11. L. Benatti, M. Fogagnolo and L. Mazzieri “Minkowski Inequality on complete Riemannian manifolds with nonnegative Ricci curvature” To appear in An.& PDEs, 2022 arXiv:2101.06063
  12. L. Benatti, M. Fogagnolo and L. Mazzieri “On the Isoperimetric Riemannian Penrose Inequality”, 2023 arXiv:2212.10215
  13. L. Benatti, A. Pluda and M. Pozzetta “Fine properties of nonlinear potentials and Geroch-type monotonicities” In preparation, 2024
  14. H.L. Bray “The Penrose inequality in general relativity and volume comparison theorems involving scalar curvature” Thesis (Ph.D.)–Stanford University ProQuest LLC, Ann Arbor, MI, 1997, pp. 103 URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:9810085
  15. H.L. Bray “Proof of the Riemannian Penrose inequality using the positive mass theorem” In J. Differential Geom. 59.2, 2001, pp. 177–267 URL: http://projecteuclid.org/euclid.jdg/1090349428
  16. “Harmonic functions and the mass of 3-dimensional asymptotically flat Riemannian manifolds” In J. Geom. Anal. 32.6, 2022, pp. Paper No. 184\bibrangessep29 DOI: 10.1007/s12220-022-00924-0
  17. S. Brendle “Scalar curvature rigidity of convex polytopes” In Invent. Math. 235.2, 2024, pp. 669–708 DOI: 10.1007/s00222-023-01229-x
  18. “A volume comparison theorem for asymptotically hyperbolic manifolds” In Comm. Math. Phys. 332.2, 2014, pp. 839–846 DOI: 10.1007/s00220-014-2074-1
  19. P. Burkhardt-Guim “Pointwise lower scalar curvature bounds for C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT metrics via regularizing Ricci flow” In Geom. Funct. Anal. 29.6, 2019, pp. 1703–1772 DOI: 10.1007/s00039-019-00514-3
  20. P. Burkhardt-Guim “ADM mass for C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT metrics and distortion under Ricci-DeTurck flow” In J. Reine Angew. Math. 806, 2024, pp. 187–245 DOI: 10.1515/crelle-2023-0085
  21. A.Y. Burtscher “Length structures on manifolds with continuous Riemannian metrics” In New York J. Math. 21, 2015, pp. 273–296 URL: http://nyjm.albany.edu:8000/j/2015/21_273.html
  22. P. Buser “A note on the isoperimetric constant” In Ann. Sci. École Norm. Sup. (4) 15.2, 1982, pp. 213–230 URL: http://www.numdam.org/item?id=ASENS_1982_4_15_2_213_0
  23. A. Carlotto, O. Chodosh and M. Eichmair “Effective versions of the positive mass theorem” In Invent. Math. 206.3, 2016, pp. 975–1016 DOI: 10.1007/s00222-016-0667-3
  24. J. Cheeger “Differentiability of Lipschitz functions on metric measure spaces” In Geom. Funct. Anal. 9.3, 1999, pp. 428–517
  25. “Incompressible hypersurface, positive scalar curvature and positive mass theorem”, 2021 arXiv:2112.14442
  26. “Isoperimetry, scalar curvature, and mass in asymptotically flat Riemannian 3-manifolds” In Comm. Pure Appl. Math. 74.4, 2021, pp. 865–905 DOI: 10.1002/cpa.21981
  27. P. Chruściel “Boundary conditions at spatial infinity from a Hamiltonian point of view” In Topological properties and global structure of space-time (Erice, 1985) 138, NATO Adv. Sci. Inst. Ser. B: Phys. Plenum, New York, 1986, pp. 49–59
  28. J. Chu, M.-C. Lee and J. Zhu “Singular positive mass theorem with arbitrary ends”, 2022 arXiv:2210.08261
  29. “On isoperimetric surfaces in general relativity” In Pacific J. Math. 231.1, 2007, pp. 63–84 DOI: 10.2140/pjm.2007.231.63
  30. “Stability of Euclidean 3-space for the positive mass theorem”, 2023 arXiv:2302.07414
  31. “Large isoperimetric surfaces in initial data sets” In J. Differential Geom. 94.1, 2013, pp. 159–186 URL: http://projecteuclid.org/euclid.jdg/1361889064
  32. “Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions” In Invent. Math. 194.3, 2013, pp. 591–630 DOI: 10.1007/s00222-013-0452-5
  33. X.-Q. Fan, Y. Shi and L.-F. Tam “Large-sphere and small-sphere limits of the Brown-York mass” In Comm. Anal. Geom. 17.1, 2009, pp. 37–72 DOI: 10.4310/CAG.2009.v17.n1.a3
  34. “Normal and integral currents” In Ann. of Math. (2) 72, 1960, pp. 458–520 DOI: 10.2307/1970227
  35. “Minimising hulls, p𝑝pitalic_p-capacity and isoperimetric inequality on complete Riemannian manifolds” In J. Funct. Anal. 283.9, 2022, pp. Paper No. 109638\bibrangessep49 DOI: 10.1016/j.jfa.2022.109638
  36. A. Grigor’yan “Isoperimetric inequalities and capacities on Riemannian manifolds” In The Maz’ya anniversary collection, Vol. 1 (Rostock, 1998) 109, Oper. Theory Adv. Appl. Birkhäuser, Basel, 1999, pp. 139–153
  37. M. Gromov “Dirac and Plateau billiards in domains with corners” In Cent. Eur. J. Math. 12.8, 2014, pp. 1109–1156 DOI: 10.2478/s11533-013-0399-1
  38. “Sobolev met Poincaré” In Mem. Amer. Math. Soc. 145.688, 2000, pp. x+101 DOI: 10.1090/memo/0688
  39. J. Heinonen, T. Kilpeläinen and O. Martio “Nonlinear potential theory of degenerate elliptic equations” Oxford Science Publications, Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, New York, 1993, pp. vi+363
  40. I. Holopainen “Nonlinear potential theory and quasiregular mappings on Riemannian manifolds” In Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, 1990, pp. 45
  41. “Stability of the positive mass theorem for graphical hypersurfaces of Euclidean space” In Comm. Math. Phys. 337.1, 2015, pp. 151–169 DOI: 10.1007/s00220-014-2265-9
  42. L.-H. Huang, D.A. Lee and C. Sormani “Intrinsic flat stability of the positive mass theorem for graphical hypersurfaces of Euclidean space” In J. Reine Angew. Math. 727, 2017, pp. 269–299 DOI: 10.1515/crelle-2015-0051
  43. G. Huisken “Calculus of variations” Abstracts from the workshop held July 9–15, 2006, Organized by Giovanni Alberti, Robert McCann and Tristan Riviere, Oberwolfach Reports. Vol. 3, no. 3 In Oberwolfach Rep. 3.3, 2006, pp. 1879–1939 DOI: 10.4171/OWR/2006/31
  44. G. Huisken “Mathematical aspects of general relativity (hybrid meeting)” Abstracts from the workshop held August 29–September 4, 2021, Organized by Carla Cederbaum, Mihalis Dafermos, Jim Isenberg and Hans Ringström In Oberwolfach Rep. 18.3, 2021, pp. 2157–2267 DOI: 10.4171/owr/2021/40
  45. “The inverse mean curvature flow and the Riemannian Penrose inequality” In J. Differential Geom. 59.3, 2001, pp. 353–437 URL: http://projecteuclid.org/euclid.jdg/1090349447
  46. “Definition of center of mass for isolated physical systems and unique foliations by stable spheres with constant mean curvature” In Invent. Math. 124.1-3, 1996, pp. 281–311 DOI: 10.1007/s002220050054
  47. “Lower semicontinuity of mass under C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT convergence and Huisken’s isoperimetric mass” In J. Reine Angew. Math. 756, 2019, pp. 227–257 DOI: 10.1515/crelle-2017-0007
  48. W. Jiang, W. Sheng and H. Zhang “Removable singularity of positive mass theorem with continuous metrics” In Math. Z. 302.2, 2022, pp. 839–874 DOI: 10.1007/s00209-022-03081-w
  49. “Erratum: “Singular solutions of the p𝑝pitalic_p-Laplace equation” [Math. Ann. 275 (1986), no. 4, 599–615; MR0859333 (87j:35096)]” In Math. Ann. 277.2, 1987, pp. 352 DOI: 10.1007/BF01457369
  50. “Differentiable structures on metric measure spaces: a primer” In Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 16.1, 2016, pp. 41–64
  51. “Local Gradient Estimates of p𝑝pitalic_p-Harmonic Functions, 1/H1𝐻1/H1 / italic_H-Flow, and an Entropy Formula” In Annales Scientifiques de l’École Normale Supérieure. Quatrième Série 42.1, 2009, pp. 1–36 DOI: 10.24033/asens.2089
  52. T. Kura “On the Green function of the p𝑝pitalic_p-Laplace equation for Riemannian manifolds” In Proc. Japan Acad. Ser. A Math. Sci. 75.3, 1999, pp. 37–38 URL: http://projecteuclid.org/euclid.pja/1148393962
  53. D.A. Lee “Geometric relativity” 201, Graduate Studies in Mathematics American Mathematical Society, Providence, RI, 2019, pp. xii+361 DOI: 10.1090/gsm/201
  54. “The positive mass theorem for manifolds with distributional curvature” In Comm. Math. Phys. 339.1, 2015, pp. 99–120 DOI: 10.1007/s00220-015-2414-9
  55. D.A. Lee, M. Lesourd and R. Unger “Density and positive mass theorems for incomplete manifolds” In Calc. Var. Partial Differential Equations 62.7, 2023, pp. Paper No. 194\bibrangessep23 DOI: 10.1007/s00526-023-02516-4
  56. “Stability of the positive mass theorem for rotationally symmetric Riemannian manifolds” In J. Reine Angew. Math. 686, 2014, pp. 187–220 DOI: 10.1515/crelle-2012-0094
  57. M. Lesourd, R. Unger and S.-T. Yau “The Positive Mass Theorem with Arbitrary Ends” Accepted in J. Differential Geom., 2021 arXiv:¯¯2103.02744
  58. C. Li “A polyhedron comparison theorem for 3-manifolds with positive scalar curvature” In Invent. Math. 219.1, 2020, pp. 1–37 DOI: 10.1007/s00222-019-00895-0
  59. “Positive scalar curvature with skeleton singularities” In Math. Ann. 374.1-2, 2019, pp. 99–131 DOI: 10.1007/s00208-018-1753-1
  60. “Green’s functions, harmonic functions, and volume comparison” In J. Differential Geom. 41.2, 1995, pp. 277–318 URL: http://projecteuclid.org/euclid.jdg/1214456219
  61. F. Maggi “Sets of finite perimeter and geometric variational problems” An introduction to geometric measure theory 135, Cambridge Studies in Advanced Mathematics Cambridge University Press, Cambridge, 2012, pp. xx+454 DOI: 10.1017/CBO9781139108133
  62. L. Mari, M. Rigoli and Al.G. Setti “On the 1/H1𝐻1/H1 / italic_H-Flow by p𝑝pitalic_p-Laplace Approximation: New Estimates via Fake Distances under Ricci Lower Bounds” In American Journal of Mathematics 144.3, 2022, pp. 779–849 DOI: 10.1353/ajm.2022.0016
  63. “On the positive mass theorem for manifolds with corners” In Comm. Math. Phys. 313.2, 2012, pp. 425–443 DOI: 10.1007/s00220-012-1498-8
  64. P. Miao “Positive mass theorem on manifolds admitting corners along a hypersurface” In Adv. Theor. Math. Phys. 6.6, 2002, pp. 1163–1182 DOI: 10.4310/ATMP.2002.v6.n6.a4
  65. M. Miranda Jr. “Functions of bounded variation on “good” metric spaces” In Journal de Mathématiques Pures et Appliquées 82.8, 2003, pp. 975–1004
  66. R. Moser “The inverse mean curvature flow and p𝑝pitalic_p-harmonic functions” In J. Eur. Math. Soc. (JEMS) 9.1, 2007, pp. 77–83 DOI: 10.4171/JEMS/73
  67. R. Moser “Geroch monotonicity and the construction of weak solutions of the inverse mean curvature flow” In Asian J. Math. 19.2, 2015, pp. 357–376 DOI: 10.4310/AJM.2015.v19.n2.a9
  68. “Comparison theorems for 3D manifolds with scalar curvature bound” In Int. Math. Res. Not. IMRN, 2023, pp. 2215–2242 DOI: 10.1093/imrn/rnab307
  69. S. Nardulli “Generalized existence of isoperimetric regions in non-compact Riemannian manifolds and applications to the isoperimetric profile” In Asian J. Math. 18.1, 2014, pp. 1–28 DOI: 10.4310/AJM.2014.v18.n1.a1
  70. C. Nerz “Foliations by stable spheres with constant mean curvature for isolated systems without asymptotic symmetry” In Calc. Var. Partial Differential Equations 54.2, 2015, pp. 1911–1946 DOI: 10.1007/s00526-015-0849-7
  71. P. Petersen “Riemannian geometry” 171, Graduate Texts in Mathematics Springer, Cham, 2016, pp. xviii+499 DOI: 10.1007/978-3-319-26654-1
  72. A. Petrunin “Metric geometry on manifolds: two lectures”, 2021 arXiv:2010.10040
  73. T. Rajala “Local Poincaré inequalities from stable curvature conditions on metric spaces” In Calc. Var. Partial Differential Equations 44.3-4, 2012, pp. 477–494 DOI: 10.1007/s00526-011-0442-7
  74. M. Rigoli, M. Salvatori and M. Vignati “A note on p𝑝pitalic_p-subharmonic functions on complete manifolds” In Manuscripta Math. 92.3, 1997, pp. 339–359 DOI: 10.1007/BF02678198
  75. M. Ritoré “Isoperimetric inequalities in Riemannian manifolds” 348, Progress in Mathematics Birkhäuser/Springer, Cham, [2023] ©2023, pp. xviii+460 DOI: 10.1007/978-3-031-37901-7
  76. L. Saloff-Coste “Aspects of Sobolev-type inequalities” 289, London Mathematical Society Lecture Note Series Cambridge University Press, Cambridge, 2002, pp. x+190
  77. “On the proof of the positive mass conjecture in general relativity” In Comm. Math. Phys. 65.1, 1979, pp. 45–76 URL: http://projecteuclid.org/euclid.cmp/1103904790
  78. “Positive scalar curvature and minimal hypersurface singularities” In Surveys in differential geometry 2019. Differential geometry, Calabi-Yau theory, and general relativity. Part 2 24, Surv. Differ. Geom. Int. Press, Boston, MA, [2022] ©2022, pp. 441–480
  79. Y. Shi “The isoperimetric inequality on asymptotically flat manifolds with nonnegative scalar curvature” In Int. Math. Res. Not. IMRN, 2016, pp. 7038–7050 DOI: 10.1093/imrn/rnv395
  80. “Scalar curvature and singular metrics” In Pacific J. Math. 293.2, 2018, pp. 427–470 DOI: 10.2140/pjm.2018.293.427
  81. M. Simon “Deformation of C0superscript𝐶0C^{0}italic_C start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Riemannian metrics in the direction of their Ricci curvature” In Comm. Anal. Geom. 10.5, 2002, pp. 1033–1074 DOI: 10.4310/CAG.2002.v10.n5.a7
  82. C. Sormani “Conjectures on convergence and scalar curvature” In Perspectives in scalar curvature. Vol. 2 World Sci. Publ., Hackensack, NJ, [2023] ©2023, pp. 645–722
  83. E. Witten “A new proof of the positive energy theorem” In Comm. Math. Phys. 80.3, 1981, pp. 381–402 URL: http://projecteuclid.org/euclid.cmp/1103919981
  84. K. Xu “Isoperimetry and the properness of weak inverse mean curvature flow”, 2023 arXiv:2307.00725
  85. H. Yu “Isoperimetry for asymptotically flat 3-manifolds with positive ADM mass” In Math. Ann. 385.3-4, 2023, pp. 1475–1492 DOI: 10.1007/s00208-022-02366-z
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: