Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient first principles based modeling via machine learning: from simple representations to high entropy materials

Published 22 Mar 2024 in cond-mat.mtrl-sci | (2403.15579v1)

Abstract: High-entropy materials (HEMs) have recently emerged as a significant category of materials, offering highly tunable properties. However, the scarcity of HEM data in existing density functional theory (DFT) databases, primarily due to computational expense, hinders the development of effective modeling strategies for computational materials discovery. In this study, we introduce an open DFT dataset of alloys and employ ML methods to investigate the material representations needed for HEM modeling. Utilizing high-throughput DFT calculations, we generate a comprehensive dataset of 84k structures, encompassing both ordered and disordered alloys across a spectrum of up to seven components and the entire compositional range. We apply descriptor-based models and graph neural networks to assess how material information is captured across diverse chemical-structural representations. We first evaluate the in-distribution performance of ML models to confirm their predictive accuracy. Subsequently, we demonstrate the capability of ML models to generalize between ordered and disordered structures, between low-order and high-order alloys, and between equimolar and non-equimolar compositions. Our findings suggest that ML models can generalize from cost-effective calculations of simpler systems to more complex scenarios. Additionally, we discuss the influence of dataset size and reveal that the information loss associated with the use of unrelaxed structures could significantly degrade the generalization performance. Overall, this research sheds light on several critical aspects of HEM modeling and offers insights for data-driven atomistic modeling of HEMs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J.-W. Yeh and S.-J. Lin, Breakthrough applications of high-entropy materials, Journal of Materials Research 33, 3129 (2018).
  2. D. B. Miracle and O. N. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia 122, 448 (2017).
  3. E. P. George, D. Raabe, and R. O. Ritchie, High-entropy alloys, Nature reviews materials 4, 515 (2019).
  4. A. Amiri and R. Shahbazian-Yassar, Recent progress of high-entropy materials for energy storage and conversion, Journal of Materials Chemistry A 9, 782 (2021).
  5. Y. Sun and S. Dai, High-entropy materials for catalysis: A new frontier, Science Advances 7, eabg1600 (2021).
  6. L. Qiao, Y. Liu, and J. Zhu, A focused review on machine learning aided high-throughput methods in high entropy alloy, Journal of Alloys and Compounds 877, 160295 (2021).
  7. W. Huang, P. Martin, and H. L. Zhuang, Machine-learning phase prediction of high-entropy alloys, Acta Materialia 169, 225 (2019).
  8. K. Kaufmann and K. S. Vecchio, Searching for high entropy alloys: A machine learning approach, Acta Materialia 198, 178 (2020).
  9. Y. Ikeda, B. Grabowski, and F. Körmann, Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys, Materials Characterization 147, 464 (2019).
  10. J. Yang, P. Manganaris, and A. Mannodi-Kanakkithodi, A high-throughput computational dataset of halide perovskite alloys, Digital Discovery  (2023).
  11. K. Li and C.-C. Fu, Ground-state properties and lattice-vibration effects of disordered fe-ni systems for phase stability predictions, Physical Review Materials 4, 023606 (2020).
  12. C. Jiang and B. P. Uberuaga, Efficient ab initio modeling of random multicomponent alloys, Physical review letters 116, 105501 (2016).
  13. C. J. Bartel, Review of computational approaches to predict the thermodynamic stability of inorganic solids, Journal of Materials Science 57, 10475 (2022).
  14. S. D. Griesemer, Y. Xia, and C. Wolverton, Accelerating the prediction of stable materials with machine learning, Nature Computational Science 3, 934 (2023).
  15. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47, 558 (1993).
  16. G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6, 15 (1996a).
  17. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169 (1996b).
  18. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
  19. M. Methfessel and A. T. Paxton, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B 40, 3616 (1989).
  20. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13, 5188 (1976).
  21. A. Van De Walle, M. Asta, and G. Ceder, The alloy theoretic automated toolkit: A user guide, Calphad 26, 539 (2002).
  22. L. Breiman, Random forests, Machine learning 45, 5 (2001).
  23. K. Choudhary and B. DeCost, Atomistic line graph neural network for improved materials property predictions, npj Computational Materials 7, 185 (2021).
  24. L. N. Smith and N. Topin, Super-convergence: Very fast training of neural networks using large learning rates (2018), arXiv:1708.07120 [cs.LG] .
  25. J. M. Sanchez, F. Ducastelle, and D. Gratias, Generalized cluster description of multicomponent systems, Physica A: Statistical Mechanics and its Applications 128, 334 (1984).
  26. J. M. Cowley, An Approximate Theory of Order in Alloys, Phys. Rev. 77, 669 (1950).
  27. C. Zhang and M. C. Gao, Calphad modeling of high-entropy alloys, High-Entropy Alloys: Fundamentals and Applications , 399 (2016).
Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 3 likes about this paper.