Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blockchain-based Pseudonym Management for Vehicle Twin Migrations in Vehicular Edge Metaverse (2403.15285v1)

Published 22 Mar 2024 in cs.NI, cs.CR, cs.HC, and cs.LG

Abstract: Driven by the great advances in metaverse and edge computing technologies, vehicular edge metaverses are expected to disrupt the current paradigm of intelligent transportation systems. As highly computerized avatars of Vehicular Metaverse Users (VMUs), the Vehicle Twins (VTs) deployed in edge servers can provide valuable metaverse services to improve driving safety and on-board satisfaction for their VMUs throughout journeys. To maintain uninterrupted metaverse experiences, VTs must be migrated among edge servers following the movements of vehicles. This can raise concerns about privacy breaches during the dynamic communications among vehicular edge metaverses. To address these concerns and safeguard location privacy, pseudonyms as temporary identifiers can be leveraged by both VMUs and VTs to realize anonymous communications in the physical space and virtual spaces. However, existing pseudonym management methods fall short in meeting the extensive pseudonym demands in vehicular edge metaverses, thus dramatically diminishing the performance of privacy preservation. To this end, we present a cross-metaverse empowered dual pseudonym management framework. We utilize cross-chain technology to enhance management efficiency and data security for pseudonyms. Furthermore, we propose a metric to assess the privacy level and employ a Multi-Agent Deep Reinforcement Learning (MADRL) approach to obtain an optimal pseudonym generating strategy. Numerical results demonstrate that our proposed schemes are high-efficiency and cost-effective, showcasing their promising applications in vehicular edge metaverses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. Y. Wang, Z. Su, N. Zhang, R. Xing, D. Liu, T. H. Luan, and X. Shen, “A survey on metaverse: Fundamentals, security, and privacy,” IEEE Communications Surveys & Tutorials, 2022.
  2. W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and M. Debbah, “Edge learning for b5g networks with distributed signal processing: Semantic communication, edge computing, and wireless sensing,” IEEE journal of selected topics in signal processing, vol. 17, no. 1, pp. 9–39, 2023.
  3. L. Liu, J. Feng, C. Wu, C. Chen, and Q. Pei, “Reputation management for consensus mechanism in vehicular edge metaverse,” IEEE Journal on Selected Areas in Communications, 2023.
  4. J. Zhang, J. Nie, J. Wen, J. Kang, M. Xu, X. Luo, and D. Niyato, “Learning-based incentive mechanism for task freshness-aware vehicular twin migration,” in 2023 IEEE 43rd International Conference on Distributed Computing Systems Workshops (ICDCSW).   IEEE, 2023, pp. 103–108.
  5. X. Luo, J. Wen, J. Kang, J. Nie, Z. Xiong, Y. Zhang, Z. Yang, and S. Xie, “Privacy attacks and defenses for digital twin migrations in vehicular metaverses,” IEEE Network, pp. 1–1, 2023.
  6. Z. Durante, Q. Huang, N. Wake, R. Gong, J. S. Park, B. Sarkar, R. Taori, Y. Noda, D. Terzopoulos, Y. Choi et al., “Agent ai: Surveying the horizons of multimodal interaction,” arXiv preprint arXiv:2401.03568, 2024.
  7. C. Cui, Y. Ma, X. Cao, W. Ye, Y. Zhou, K. Liang, J. Chen, J. Lu, Z. Yang, K.-D. Liao et al., “A survey on multimodal large language models for autonomous driving,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 958–979.
  8. J. Petit, F. Schaub, M. Feiri, and F. Kargl, “Pseudonym schemes in vehicular networks: A survey,” IEEE communications surveys & tutorials, vol. 17, no. 1, pp. 228–255, 2014.
  9. J. Kang, R. Yu, X. Huang, and Y. Zhang, “Privacy-preserved pseudonym scheme for fog computing supported internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 8, pp. 2627–2637, 2017.
  10. Y. Wang, Z. Su, S. Guo, M. Dai, T. H. Luan, and Y. Liu, “A survey on digital twins: architecture, enabling technologies, security and privacy, and future prospects,” IEEE Internet of Things Journal, 2023.
  11. J. Xu, C. He, and T. H. Luan, “Efficient authentication for vehicular digital twin communications,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall).   IEEE, 2021, pp. 1–5.
  12. H. Fang, X. Wang, N. Zhao, and N. Al-Dhahir, “Lightweight continuous authentication via intelligently arranged pseudo-random access in 5g-and-beyond,” IEEE Transactions on Communications, vol. 69, no. 6, pp. 4011–4023, 2021.
  13. S. Khan, F. Luo, Z. Zhang, M. A. Rahim, S. Khan, S. F. Qadri, and K. Wu, “A privacy-preserving and transparent identity management scheme for vehicular social networking,” IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 11 555–11 570, 2022.
  14. G. Cheng, J. Huang, Y. Wang, J. Zhao, L. Kong, S. Deng, and X. Yan, “Conditional privacy-preserving multi-domain authentication and pseudonym management for 6g-enabled iov,” IEEE Transactions on Information Forensics and Security, 2023.
  15. H. Huang, W. Kong, S. Zhou, Z. Zheng, and S. Guo, “A survey of state-of-the-art on blockchains: Theories, modelings, and tools,” ACM Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–42, 2021.
  16. J. Kang, J. Wen, D. Ye, B. Lai, T. Wu, Z. Xiong, J. Nie, D. Niyato, Y. Zhang, and S. Xie, “Blockchain-empowered federated learning for healthcare metaverses: User-centric incentive mechanism with optimal data freshness,” IEEE Transactions on Cognitive Communications and Networking, 2023.
  17. T. Li, C. Yang, Q. Yang, S. Zhou, H. Huang, and Z. Zheng, “Metaopera: A cross-metaverse interoperability protocol,” arXiv preprint arXiv:2302.01600, 2023.
  18. B. Liu, W. Zhou, T. Zhu, L. Gao, and Y. Xiang, “Location privacy and its applications: A systematic study,” IEEE access, vol. 6, pp. 17 606–17 624, 2018.
  19. Z. Liu, L. Zhang, W. Ni, and I. B. Collings, “Uncoordinated pseudonym changes for privacy preserving in distributed networks,” IEEE Transactions on Mobile Computing, vol. 19, no. 6, pp. 1465–1477, 2019.
  20. H. Artail and N. Abbani, “A pseudonym management system to achieve anonymity in vehicular ad hoc networks,” IEEE Transactions on Dependable and Secure Computing, vol. 13, no. 1, pp. 106–119, 2015.
  21. B. Chaudhary and K. Singh, “Pseudonym generation using genetic algorithm in vehicular ad hoc networks,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 22, no. 4, pp. 661–677, 2019.
  22. J. Li, H. Lu, and M. Guizani, “Acpn: A novel authentication framework with conditional privacy-preservation and non-repudiation for vanets,” IEEE transactions on parallel and distributed systems, vol. 26, no. 4, pp. 938–948, 2014.
  23. J. Kang, J. He, H. Du, Z. Xiong, Z. Yang, X. Huang, and S. Xie, “Adversarial attacks and defenses for semantic communication in vehicular metaverses,” IEEE Wireless Communications, vol. 30, no. 4, pp. 48–55, 2023.
  24. P. Li, H. Zhang, Y. Wu, L. Qian, R. Yu, D. Niyato, and X. Shen, “Filling the missing: Exploring generative ai for enhanced federated learning over heterogeneous mobile edge devices,” arXiv preprint arXiv:2310.13981, 2023.
  25. J. Du, W. Cheng, G. Lu, H. Cao, X. Chu, Z. Zhang, and J. Wang, “Resource pricing and allocation in mec enabled blockchain systems: An a3c deep reinforcement learning approach,” IEEE Transactions on Network Science and Engineering, vol. 9, no. 1, pp. 33–44, 2021.
  26. D. Boneh and X. Boyen, “Short signatures without random oracles,” in International conference on the theory and applications of cryptographic techniques.   Springer, 2004, pp. 56–73.
  27. J. Liang, Z. Qin, S. Xiao, L. Ou, and X. Lin, “Efficient and secure decision tree classification for cloud-assisted online diagnosis services,” IEEE Transactions on Dependable and Secure Computing, vol. 18, no. 4, pp. 1632–1644, 2019.
  28. S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should one update?” in 2012 Proceedings IEEE INFOCOM.   IEEE, 2012, pp. 2731–2735.
  29. A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age and value of information: Non-linear age case,” in 2017 IEEE International Symposium on Information Theory (ISIT).   IEEE, 2017, pp. 326–330.
  30. J. Freudiger, M. H. Manshaei, J.-P. Hubaux, and D. C. Parkes, “On non-cooperative location privacy: a game-theoretic analysis,” in Proceedings of the 16th ACM conference on Computer and communications security, 2009, pp. 324–337.
  31. T. Zhang, C. Xu, B. Zhang, X. Li, X. Kuang, and L. A. Grieco, “Towards attack-resistant service function chain migration: A model-based adaptive proximal policy optimization approach,” IEEE Transactions on Dependable and Secure Computing, 2023.
  32. T. Zhang, C. Xu, J. Shen, X. Kuang, and L. A. Grieco, “How to disturb network reconnaissance: A moving target defense approach based on deep reinforcement learning,” IEEE Transactions on Information Forensics and Security, 2023.
  33. J. Chen, J. Kang, M. Xu, Z. Xiong, D. Niyato, C. Chen, A. Jamalipour, and S. Xie, “Multi-agent deep reinforcement learning for dynamic avatar migration in aiot-enabled vehicular metaverses with trajectory prediction,” IEEE Internet of Things Journal, pp. 1–1, 2023.
  34. J. Du, Z. Kong, A. Sun, J. Kang, D. Niyato, X. Chu, and F. R. Yu, “Maddpg-based joint service placement and task offloading in mec empowered air-ground integrated networks,” IEEE Internet of Things Journal, 2023.
  35. J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual multi-agent policy gradients,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  36. W. Li, C. Feng, L. Zhang, H. Xu, B. Cao, and M. A. Imran, “A scalable multi-layer pbft consensus for blockchain,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1146–1160, 2020.
  37. C. Feng, Z. Xu, X. Zhu, P. V. Klaine, and L. Zhang, “Wireless distributed consensus in vehicle to vehicle networks for autonomous driving,” IEEE Transactions on Vehicular Technology, 2023.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com