Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When Metaverses Meet Vehicle Road Cooperation: Multi-Agent DRL-Based Stackelberg Game for Vehicular Twins Migration (2312.17081v1)

Published 28 Dec 2023 in cs.GT

Abstract: Vehicular Metaverses represent emerging paradigms arising from the convergence of vehicle road cooperation, Metaverse, and augmented intelligence of things. Users engaging with Vehicular Metaverses (VMUs) gain entry by consistently updating their Vehicular Twins (VTs), which are deployed on RoadSide Units (RSUs) in proximity. The constrained RSU coverage and the consistently moving vehicles necessitate the continuous migration of VTs between RSUs through vehicle road cooperation, ensuring uninterrupted immersion services for VMUs. Nevertheless, the VT migration process faces challenges in obtaining adequate bandwidth resources from RSUs for timely migration, posing a resource trading problem among RSUs. In this paper, we tackle this challenge by formulating a game-theoretic incentive mechanism with multi-leader multi-follower, incorporating insights from social-awareness and queueing theory to optimize VT migration. To validate the existence and uniqueness of the Stackelberg Equilibrium, we apply the backward induction method. Theoretical solutions for this equilibrium are then obtained through the Alternating Direction Method of Multipliers (ADMM) algorithm. Moreover, owing to incomplete information caused by the requirements for privacy protection, we proposed a multi-agent deep reinforcement learning algorithm named MALPPO. MALPPO facilitates learning the Stackelberg Equilibrium without requiring private information from others, relying solely on past experiences. Comprehensive experimental results demonstrate that our MALPPO-based incentive mechanism outperforms baseline approaches significantly, showcasing rapid convergence and achieving the highest reward.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. M. Xu, W. C. Ng, W. Y. B. Lim, J. Kang, Z. Xiong, D. Niyato, Q. Yang, X. S. Shen, and C. Miao, “A full dive into realizing the edge-enabled metaverse: Visions, enabling technologies, and challenges,” arXiv preprint arXiv:2203.05471, 2022.
  2. P. Zhou, J. Zhu, Y. Wang, Y. Lu, Z. Wei, H. Shi, Y. Ding, Y. Gao, Q. Huang, Y. Shi et al., “Vetaverse: Technologies, applications, and visions toward the intersection of metaverse, vehicles, and transportation systems,” arXiv preprint arXiv:2210.15109, 2022.
  3. Z. Hu, S. Lou, Y. Xing, X. Wang, D. Cao, and C. Lv, “Review and perspectives on driver digital twin and its enabling technologies for intelligent vehicles,” IEEE Transactions on Intelligent Vehicles, 2022.
  4. J. Zhang, J. Nie, J. Wen, J. Kang, M. Xu, X. Luo, and D. Niyato, “Learning-based incentive mechanism for task freshness-aware vehicular twin migration,” arXiv preprint arXiv:2309.04929, 2023.
  5. Y. Ren, R. Xie, F. R. Yu, T. Huang, and Y. Liu, “Quantum collective learning and many-to-many matching game in the metaverse for connected and autonomous vehicles,” IEEE Transactions on Vehicular Technology, vol. 71, no. 11, pp. 12 128–12 139, 2022.
  6. J. Nie, J. Luo, Z. Xiong, D. Niyato, P. Wang, and H. V. Poor, “A multi-leader multi-follower game-based analysis for incentive mechanisms in socially-aware mobile crowdsensing,” IEEE Transactions on Wireless Communications, vol. 20, no. 3, pp. 1457–1471, 2020.
  7. X. Huang, W. Zhong, J. Nie, Q. Hu, Z. Xiong, J. Kang, and T. Q. Quek, “Joint user association and resource pricing for metaverse: Distributed and centralized approaches,” in 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS).   IEEE, 2022, pp. 505–513.
  8. H. Xu, X. Qiu, W. Zhang, K. Liu, S. Liu, and W. Chen, “Privacy-preserving incentive mechanism for multi-leader multi-follower iot-edge computing market: A reinforcement learning approach,” Journal of Systems Architecture, vol. 114, p. 101932, 2021.
  9. N. H. Chu, D. N. Nguyen, D. T. Hoang, K. T. Phan, E. Dutkiewicz, D. Niyato, and T. Shu, “Dynamic resource allocation for metaverse applications with deep reinforcement learning,” in 2023 IEEE Wireless Communications and Networking Conference (WCNC).   IEEE, 2023, pp. 1–6.
  10. M. Xu, J. Peng, B. Gupta, J. Kang, Z. Xiong, Z. Li, and A. A. Abd El-Latif, “Multiagent federated reinforcement learning for secure incentive mechanism in intelligent cyber–physical systems,” IEEE Internet of Things Journal, vol. 9, no. 22, pp. 22 095–22 108, 2021.
  11. H. Du, J. Wang, D. Niyato, J. Kang, Z. Xiong, and D. I. Kim, “Ai-generated incentive mechanism and full-duplex semantic communications for information sharing,” IEEE Journal on Selected Areas in Communications, 2023.
  12. Y. Jiang, J. Kang, D. Niyato, X. Ge, Z. Xiong, C. Miao, and X. Shen, “Reliable distributed computing for metaverse: A hierarchical game-theoretic approach,” IEEE Transactions on Vehicular Technology, 2022.
  13. M. Xu, D. Niyato, J. Kang, Z. Xiong, C. Miao, and D. I. Kim, “Wireless edge-empowered metaverse: A learning-based incentive mechanism for virtual reality,” in ICC 2022-IEEE International conference on Communications.   IEEE, 2022, pp. 5220–5225.
  14. D. M. Doe, J. Li, N. Dusit, Z. Gao, J. Li, and Z. Han, “Promoting the sustainability of blockchain in web 3.0 and the metaverse through diversified incentive mechanism design,” IEEE Open Journal of the Computer Society, 2023.
  15. H. Yao, T. Mai, J. Wang, Z. Ji, C. Jiang, and Y. Qian, “Resource trading in blockchain-based industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 15, no. 6, pp. 3602–3609, 2019.
  16. Y. Zhan, P. Li, Z. Qu, D. Zeng, and S. Guo, “A learning-based incentive mechanism for federated learning,” IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6360–6368, 2020.
  17. N. Zhao, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent deep reinforcement learning based incentive mechanism for multi-task federated edge learning,” IEEE Transactions on Vehicular Technology, 2023.
  18. F. Li, H. Yao, J. Du, C. Jiang, and Y. Qian, “Stackelberg game-based computation offloading in social and cognitive industrial internet of things,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8, pp. 5444–5455, 2019.
  19. O. Candogan, K. Bimpikis, and A. Ozdaglar, “Optimal pricing in networks with externalities,” Operations Research, vol. 60, no. 4, pp. 883–905, 2012.
  20. J. Wen, J. Kang, M. Xu, H. Du, Z. Xiong, Y. Zhang, and D. Niyato, “Freshness-aware incentive mechanism for mobile ai-generated content (aigc) networks,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2023, pp. 1–6.
  21. Z. Xiong, J. Kang, D. Niyato, P. Wang, and H. V. Poor, “Cloud/edge computing service management in blockchain networks: Multi-leader multi-follower game-based admm for pricing,” IEEE Transactions on Services Computing, vol. 13, no. 2, pp. 356–367, 2019.
  22. C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of ppo in cooperative multi-agent games,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 611–24 624, 2022.
  23. S. Li, S. Bing, and S. Yang, “Distributional advantage actor-critic,” arXiv preprint arXiv:1806.06914, 2018.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com