Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Privacy Attacks and Defenses for Digital Twin Migrations in Vehicular Metaverses (2309.00477v1)

Published 1 Sep 2023 in cs.CR and cs.HC

Abstract: The gradual fusion of intelligent transportation systems with metaverse technologies is giving rise to vehicular metaverses, which blend virtual spaces with physical space. As indispensable components for vehicular metaverses, Vehicular Twins (VTs) are digital replicas of Vehicular Metaverse Users (VMUs) and facilitate customized metaverse services to VMUs. VTs are established and maintained in RoadSide Units (RSUs) with sufficient computing and storage resources. Due to the limited communication coverage of RSUs and the high mobility of VMUs, VTs need to be migrated among RSUs to ensure real-time and seamless services for VMUs. However, during VT migrations, physical-virtual synchronization and massive communications among VTs may cause identity and location privacy disclosures of VMUs and VTs. In this article, we study privacy issues and the corresponding defenses for VT migrations in vehicular metaverses. We first present four kinds of specific privacy attacks during VT migrations. Then, we propose a VMU-VT dual pseudonym scheme and a synchronous pseudonym change framework to defend against these attacks. Additionally, we evaluate average privacy entropy for pseudonym changes and optimize the number of pseudonym distribution based on inventory theory. Numerical results show that the average utility of VMUs under our proposed schemes is 33.8% higher than that under the equal distribution scheme, demonstrating the superiority of our schemes.

Citations (13)

Summary

We haven't generated a summary for this paper yet.