Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subspace restricted thermalization in a correlated-hopping model with strong Hilbert space fragmentation characterized by irreducible strings (2403.14314v2)

Published 21 Mar 2024 in cond-mat.stat-mech and cond-mat.str-el

Abstract: We introduce a one-dimensional correlated-hopping model of spinless fermions in which a particle can hop between two neighboring sites only if the sites to the left and right of those two sites have different particle numbers. Using a bond-to-site mapping, this model involving four-site terms can be mapped to an assisted pair-flipping model involving only three-site terms. This model shows strong Hilbert space fragmentation (HSF). We define irreducible strings (IS) to label the different fragments, determine the number of fragments, and the sizes of fragments corresponding to some special IS. In some classes of fragments, the Hamiltonian can be diagonalized completely, and in others it can be seen to have a structure characteristic of models which are not fully integrable. In the largest fragment in our model, the number of states grows exponentially with the system size, but the ratio of this number to the total Hilbert space size tends to zero exponentially in the thermodynamic limit. Within this fragment, we provide numerical evidence that only a weak version of the eigenstate thermalization hypothesis (ETH) remains valid; we call this subspace-restricted ETH. To understand the out-of-equilibrium dynamics of the model, we study the infinite-temperature time-dependent autocorrelation functions starting from a random initial state; we find that these exhibit a different behavior near the boundary compared to the bulk. Finally we propose an experimental setup to realize our correlated-hopping model.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.