Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A max filtering local stability theorem with application to weighted phase retrieval and cryo-EM (2403.14042v2)

Published 20 Mar 2024 in math.FA, cs.IT, and math.IT

Abstract: Given an inner product space $V$ and a group $G$ of linear isometries, max filtering offers a rich class of convex $G$-invariant maps. In this paper, we identify sufficient conditions under which these maps are locally lower Lipschitz on $R(G)$, the set of orbits with maximal dimension, with respect to the quotient metric on the orbit space $V/G$. Central to our proof is a desingularization theorem, which applies to open, dense neighborhoods around each orbit in $R(G)/G$ and may be of independent interest. As an application, we provide guarantees for stable weighted phase retrieval. That is, we construct componentwise convex bilipschitz embeddings of weighted complex (resp.\ quaternionic) projective spaces. These spaces arise as quotients of direct sums of nontrivial unitary irreducible complex (resp.\ quaternionic) representations of the group of unit complex numbers $S1\cong \operatorname{SO}(2)$ (resp.\ unit quaternions $S3\cong \operatorname{SU}(2)$). We also discuss the relevance of such embeddings to a nearest-neighbor problem in single-particle cryogenic electron microscopy (cryo-EM), a leading technique for resolving the spatial structure of biological molecules.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: