Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Probing minihalo lenses with diffracted gravitational waves (2403.13876v1)

Published 20 Mar 2024 in gr-qc and astro-ph.CO

Abstract: When gravitational waves pass near a gravitating object, they are deflected, or lensed. If the object is massive, such that the wavelength of the waves is small compared to its gravitational size, lensed gravitational wave events can be identified when multiple signals are detected at different times. However, when the wavelength is long, wave-optics diffraction effects will be important, and a lensed event can be identified by looking for frequency-dependent modulations to the gravitational waveform, without having to associate multiple signals. For current ground-based gravitational wave detectors observing stellar-mass binary compact object mergers, wave-optics effects are important for lenses with masses $\lesssim 1000 M_{\odot}$. Therefore, minihalos below this mass range could potentially be identified by lensing diffraction. The challenge with analyzing these events is that the frequency-dependent lensing modulation, or the amplification factor, is prohibitively expensive to compute for Bayesian parameter inference. In this work, we use a novel time-domain method to construct interpolators of the amplification factor for the Navarro-Frenk-White (NFW), generalized singular isothermal sphere (gSIS) and cored isothermal sphere (CIS) lens models. Using these interpolators, we perform Bayesian inference on gravitational-wave signals lensed by minihalos injected in mock detector noise, assuming current sensitivity of ground-based detectors. We find that we could potentially identify an event when it is lensed by minihalos and extract the values of all lens parameters in addition to the parameters of the GW source. All of the methods are implemented in Glworia, the accompanying open-source Python package, and can be generalized to study lensed signals detected by current and next-generation detectors.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. M. H.-Y. Cheung, “glworia,” https://github.com/mhycheung/glworia (2024).
  2. M. Bartelmann, Class. Quant. Grav. 27, 233001 (2010), arXiv:1010.3829 [astro-ph.CO] .
  3. A. Einstein, Annalen Phys. 49, 769 (1916).
  4. I. A. Bond et al., Astrophys. J. Lett. 606, L155 (2004), arXiv:astro-ph/0404309 .
  5. D. Coe et al., Astrophys. J. 762, 32 (2013), arXiv:1211.3663 [astro-ph.CO] .
  6. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  7. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  8. M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments (Oxford University Press, 2007).
  9. B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 9, 031040 (2019), arXiv:1811.12907 [astro-ph.HE] .
  10. R. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  11. H. C. Ohanian, Int. J. Theor. Phys. 9, 425 (1974).
  12. M. Oguri, Rept. Prog. Phys. 82, 126901 (2019), arXiv:1907.06830 [astro-ph.CO] .
  13. J. M. Ezquiaga and M. Zumalacárregui, Phys. Rev. D 102, 124048 (2020), arXiv:2009.12187 [gr-qc] .
  14. T. Baker and M. Trodden, Phys. Rev. D 95, 063512 (2017), arXiv:1612.02004 [astro-ph.CO] .
  15. T. E. Collett and D. Bacon, Phys. Rev. Lett. 118, 091101 (2017), arXiv:1602.05882 [astro-ph.HE] .
  16. R. Takahashi and T. Nakamura, Astrophys. J. 595, 1039 (2003), arXiv:astro-ph/0305055 .
  17. L. Dai and T. Venumadhav,   (2017), arXiv:1702.04724 [gr-qc] .
  18. A. K. Meena and J. S. Bagla, Mon. Not. Roy. Astron. Soc. 492, 1127 (2020), arXiv:1903.11809 [astro-ph.CO] .
  19. S. Jung and C. S. Shin, Phys. Rev. Lett. 122, 041103 (2019), arXiv:1712.01396 [astro-ph.CO] .
  20. J. M. Diego, Phys. Rev. D 101, 123512 (2020), arXiv:1911.05736 [astro-ph.CO] .
  21. J. Urrutia and V. Vaskonen, Mon. Not. Roy. Astron. Soc. 509, 1358 (2021), arXiv:2109.03213 [astro-ph.CO] .
  22. M. Oguri and R. Takahashi, Astrophys. J. 901, 58 (2020), arXiv:2007.01936 [astro-ph.CO] .
  23. X. Guo and Y. Lu, Phys. Rev. D 106, 023018 (2022), arXiv:2207.00325 [astro-ph.CO] .
  24. A. G. Suvorov, Astrophys. J. 930, 13 (2022), arXiv:2112.01670 [astro-ph.HE] .
  25. S. Adhikari et al.,   (2022), arXiv:2207.10638 [astro-ph.CO] .
  26. M. S. Delos and S. D. M. White, Mon. Not. Roy. Astron. Soc. 518, 3509 (2022), arXiv:2207.05082 [astro-ph.CO] .
  27. M. S. Delos, Mon. Not. Roy. Astron. Soc. 522, L78 (2023), arXiv:2302.03040 [astro-ph.CO] .
  28. T. Blaineau et al., Astron. Astrophys. 664, A106 (2022), arXiv:2202.13819 [astro-ph.GA] .
  29. M. Zumalacarregui and U. Seljak, Phys. Rev. Lett. 121, 141101 (2018), arXiv:1712.02240 [astro-ph.CO] .
  30. R. Abbott et al. (LIGO Scientific, VIRGO), Astrophys. J. 923, 14 (2021b), arXiv:2105.06384 [gr-qc] .
  31. R. K. L. Lo and I. Magana Hernandez, Phys. Rev. D 107, 123015 (2023), arXiv:2104.09339 [gr-qc] .
  32. M. Oguri, Mon. Not. Roy. Astron. Soc. 480, 3842 (2018), arXiv:1807.02584 [astro-ph.CO] .
  33. G. Cusin and N. Tamanini, Mon. Not. Roy. Astron. Soc. 504, 3610 (2021), arXiv:2011.15109 [astro-ph.CO] .
  34. A. Gould,   (1991).
  35. N. Matsunaga and K. Yamamoto, JCAP 01, 023 (2006), arXiv:astro-ph/0601701 .
  36. L. Dai and W. Lu, Astrophys. J. 847, 19 (2017), arXiv:1706.06103 [astro-ph.HE] .
  37. R. Laha, Phys. Rev. D 102, 023016 (2020), arXiv:1812.11810 [astro-ph.CO] .
  38. D. Eichler, Astrophys. J. 850, 159 (2017), arXiv:1711.04764 [astro-ph.HE] .
  39. C. Leung et al., Phys. Rev. D 106, 043017 (2022), arXiv:2204.06001 [astro-ph.HE] .
  40. R. Takahashi, Astron. Astrophys. 423, 787 (2004), arXiv:astro-ph/0402165 .
  41. A. Ulmer and J. Goodman, Astrophys. J. 442, 67 (1995), arXiv:astro-ph/9406042 .
  42. M. Wright and M. Hendry,   (2021), 10.3847/1538-4357/ac7ec2, arXiv:2112.07012 [astro-ph.HE] .
  43. M. Bartelmann, Astron. Astrophys. 313, 697 (1996), arXiv:astro-ph/9602053 .
  44. G. Hinshaw and L. M. Krauss, ApJ 320, 468 (1987).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 71 likes.

Upgrade to Pro to view all of the tweets about this paper: