Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 32 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Probing Hilbert Space Fragmentation with Strongly Interacting Rydberg Atoms (2403.13790v2)

Published 20 Mar 2024 in quant-ph, cond-mat.quant-gas, and physics.atom-ph

Abstract: Hilbert space fragmentation provides a mechanism to break ergodicity in closed many-body systems. Here, we propose a feasible scheme to explore this exotic paradigm on a Rydberg quantum simulator. We show that the Rydberg Ising model in the large detuning regime can be mapped to a generalized folded XXZ model featuring a strongly fragmented Hilbert space. The emergent Hamiltonian, however, displays distinct time scales for the transport of a magnon and a hole excitation. This interesting property facilitates a continuous tuning of the Krylov-subspace ergodicity, from the integrable regime, to the Krylov-restricted thermal phase, and eventually to the statistical bubble localization region. By further introducing nonlocal interactions, we find that both the fragmentation behavior and the ergodicity of the Krylov subspace can be significantly enriched. We also examine the role of atomic position disorders and identify a symmetry-selective many-body localization transition. We demonstrate that these phenomena manifest themselves in quench dynamics, which can be readily probed in state-of-the-art Rydberg array setups.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. L. D. Landau and E. M. Lifshitz, Statistical Physics: Volume 5, Vol. 5 (Elsevier, 2013).
  2. H. B. Callen, Thermodynamics and an Introduction to Thermostatistics (John wiley & sons, 1991).
  3. W. Greiner, L. Neise, and H. Stöcker, Thermodynamics and statistical mechanics (Springer Science & Business Media, 2012).
  4. R. K. Pathria, Statistical mechanics (Elsevier, 2016).
  5. J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
  6. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C. R. Phys. 19, 498 (2018).
  7. N. Regnault, S. Moudgalya, and B. A. Bernevig, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Rep. Prog. Phys.  (2022).
  8. B. Buča, Unified Theory of Local Quantum Many-Body Dynamics: Eigenoperator Thermalization Theorems, Phys. Rev. X 13, 031013 (2023).
  9. J. A. Kjäll, J. H. Bardarson, and F. Pollmann, Many-body localization in a disordered quantum Ising chain, Phys. Rev. Lett. 113, 107204 (2014).
  10. R. Vosk, D. A. Huse, and E. Altman, Theory of the many-body localization transition in one-dimensional systems, Phys. Rev. X 5, 031032 (2015).
  11. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars in a Landau level on a thin torus, Phys. Rev. B 102, 195150 (2020).
  12. S. Pai, M. Pretko, and R. M. Nandkishore, Localization in fractonic random circuits, Phys. Rev. X 9, 021003 (2019).
  13. V. Khemani, M. Hermele, and R. Nandkishore, Localization from Hilbert space shattering: From theory to physical realizations, Phys. Rev. B 101, 174204 (2020).
  14. L. Zadnik, K. Bidzhiev, and M. Fagotti, The folded spin-1/2 XXZ model: II. Thermodynamics and hydrodynamics with a minimal set of charges, SciPost Phys. 10, 099 (2021).
  15. A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16, 132 (2020).
  16. M. Morgado and S. Whitlock, Quantum simulation and computing with Rydberg-interacting qubits, AVS Quantum Sci. 3 (2021).
  17. I.-C. Chen and T. Iadecola, Emergent symmetries and slow quantum dynamics in a Rydberg-atom chain with confinement, Phys. Rev. B 103, 214304 (2021).
  18. F. Yang, S. Yang, and L. You, Quantum transport of Rydberg excitons with synthetic spin-exchange interactions, Phys. Rev. Lett. 123, 063001 (2019).
  19. S. Bravyi, D. P. DiVincenzo, and D. Loss, Schrieffer–Wolff transformation for quantum many-body systems, Ann. Phys. 326, 2793 (2011).
  20. T. Gombor and B. Pozsgay, Integrable spin chains and cellular automata with medium-range interaction, Phys. Rev. E 104, 054123 (2021).
  21. H. Yarloo, M. Mohseni-Rajaee, and A. Langari, Emergent statistical bubble localization in a Z2 lattice gauge theory, Phys. Rev. B 99, 054403 (2019).
  22. A. Bastianello, U. Borla, and S. Moroz, Fragmentation and emergent integrable transport in the weakly tilted Ising chain, Phys. Rev. Lett. 128, 196601 (2022).
  23. F. M. Surace and O. Motrunich, Weak integrability breaking perturbations of integrable models, Phys. Rev. Res. 5, 043019 (2023).
  24. F. Alcaraz and R. Bariev, An exactly solvable constrained XXZ chain, arXiv preprint cond-mat/9904042  (1999).
  25. I. N. Karnaukhov and A. A. Ovchinnikov, One-dimensional strongly interacting Luttinger liquid of lattice spinless fermions, Europhys. Lett. 57, 540 (2002).
  26. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492 (1958).
  27. J. Z. Imbrie, V. Ros, and A. Scardicchio, Local integrals of motion in many-body localized systems, Ann. Phys. 529, 1600278 (2017).
  28. L. Rademaker, M. Ortuño, and A. M. Somoza, Many-body Localization from the Perspective of Integrals of Motion, Ann. Phys. 529, 1600322 (2017).
  29. D. J. Luitz, N. Laflorencie, and F. Alet, Many-body localization edge in the random-field Heisenberg chain, Phys. Rev. B 91, 081103 (2015).
  30. V. Khemani, D. Sheng, and D. A. Huse, Two universality classes for the many-body localization transition, Phys. Rev. Lett. 119, 075702 (2017).
  31. L. Herviou, J. H. Bardarson, and N. Regnault, Many-body localization in a fragmented Hilbert space, Phys. Rev. B 103, 134207 (2021).
  32. Y. Cheng and H. Zhai, Emergent Gauge Theory in Rydberg Atom Arrays, arXiv:2401.07708  (2024).
  33. M. Kastner, P. Osterholz, and C. Gross, Ancilla-free measurement of out-of-time-ordered correlation functions: General measurement protocol and Rydberg atom implementation, arXiv:2403.08670  (2024).
  34. Y. Li, P. Sala, and F. Pollmann, Hilbert space fragmentation in open quantum systems, Phys. Rev. Res. 5, 043239 (2023).
Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.