Tikhonov regularized exterior penalty dynamics for constrained variational inequalities (2403.13460v1)
Abstract: Solving equilibrium problems under constraints is an important problem in optimization and optimal control. In this context an important practical challenge is the efficient incorporation of constraints. We develop a continuous-time method for solving constrained variational inequalities based on a new penalty regulated dynamical system in a general potentially infinite-dimensional Hilbert space. In order to obtain strong convergence of the issued trajectory of our method, we incorporate an explicit Tikhonov regularization parameter in our method, leading to a class of time-varying monotone inclusion problems featuring multiscale aspects. Besides strong convergence, we illustrate the practical efficiency of our developed method in solving constrained min-max problems.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.