Renormalization of networks with weak geometric coupling (2403.12663v2)
Abstract: The Renormalization Group is crucial for understanding systems across scales, including complex networks. Renormalizing networks via network geometry, a framework in which their topology is based on the location of nodes in a hidden metric space, is one of the foundational approaches. However, the current methods assume that the geometric coupling is strong, neglecting weak coupling in many real networks. This paper extends renormalization to weak geometric coupling, showing that geometric information is essential to preserve self-similarity. Our results underline the importance of geometric effects on network topology even when the coupling to the underlying space is weak.
- U. C. Täuber, Renormalization group: Applications in statistical physics, Nuclear Physics B - Proceedings Supplements 228, 7 (2012).
- L. P. Kadanoff, Scaling laws for ising models near Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT, Physics Physique Fizika 2, 263 (1966).
- D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks, Nature 393, 440 (1998).
- C. Song, S. Havlin, and H. A. Makse, Self-similarity of complex networks, Nature 433, 392 (2005).
- M. A. Serrano and M. Boguñá, The Shortest Path to Network Geometry: A Practical Guide to Basic Models and Applications, Elements in Structure and Dynamics of Complex Networks (Cambridge University Press, 2022).
- M. Á. Serrano, D. Krioukov, and M. Boguñá, Self-similarity of complex networks and hidden metric spaces, Physical Review Letters 100, 078701 (2008).
- E. Candellero and N. Fountoulakis, Clustering and the Hyperbolic Geometry of Complex Networks, Internet Math. 12, 2 (2016).
- M. A. Abdullah, N. Fountoulakis, and M. Bode, Typical distances in a geometric model for complex networks, Internet Math. 1, 10.24166/im.13.2017 (2017).
- T. Friedrich and A. Krohmer, On the Diameter of Hyperbolic Random Graphs, SIAM J. Discrete Math. 32, 1314 (2018).
- T. Müller and M. Staps, The diameter of KPKVB random graphs, Adv. Appl. Probab. 51, 358 (2019).
- M. Á. Serrano, D. Krioukov, and M. Boguñá, Percolation in Self-Similar Networks, Phys. Rev. Lett. 106, 048701 (2011).
- N. Fountoulakis and T. Müller, Law of large numbers for the largest component in a hyperbolic model of complex networks, Ann. Appl. Probab. 28, 607 (2018).
- M. Kiwi and D. Mitsche, Spectral gap of random hyperbolic graphs and related parameters, Ann. Appl. Probab. 28, 941 (2018).
- G. García-Pérez, M. Boguñá, and M. Á. Serrano, Multiscale unfolding of real networks by geometric renormalization, Nature Physics 14, 583 (2018).
- J. van der Kolk, M. Á. Serrano, and M. Boguñá, Random graphs and real networks with weak geometric coupling (2023), arXiv:2312.07416 [physics.soc-ph] .
- J. van der Kolk, M. Á. Serrano, and M. Boguñá, An anomalous topological phase transition in spatial random graphs, Communications Physics 5, 245 (2022).
- P. van der Hoorn, G. Lippner, and D. Krioukov, Sparse maximum-entropy random graphs with a given power-law degree distribution, Journal of Statistical Physics 173, 806 (2018).
- J. van der Kolk, M. Boguñá, and M. Ángeles Serrano, Supplementary information for renormalization of networks with weak geometric coupling.
- P. Colomer-de Simon and M. Boguñá, Clustering of random scale-free networks, Phys. Rev. E 86, 026120 (2012).
- M. D. Domenico, M. A. Porter, and A. Arenas, Muxviz: a tool for multilayer analysis and visualization of networks, Journal of Complex Networks 3, 159 (2015).
- A. Paranjape, A. R. Benson, and J. Leskovec, Motifs in temporal networks (ACM, 2017) pp. 601–610.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.