Multiscale network renormalization: scale-invariance without geometry (2009.11024v3)
Abstract: Systems with lattice geometry can be renormalized exploiting their coordinates in metric space, which naturally define the coarse-grained nodes. By contrast, complex networks defy the usual techniques, due to their small-world character and lack of explicit geometric embedding. Current network renormalization approaches require strong assumptions (e.g. community structure, hyperbolicity, scale-free topology), thus remaining incompatible with generic graphs and ordinary lattices. Here we introduce a graph renormalization scheme valid for any hierarchy of heterogeneous coarse-grainings, thereby allowing for the definition of 'block-nodes' across multiple scales. This approach identifies a class of scale-invariant networks characterized by a necessary and specific dependence on additive hidden variables attached to nodes, plus optional dyadic factors. If the hidden variables are annealed, they lead to realistic scale-free networks with assortativity and finite local clustering, even in the sparse regime and in absence of geometry. If they are quenched, they can guide the renormalization of real-world networks with node attributes and distance-dependence or communities. As an application, we derive an accurate multiscale model of the International Trade Network applicable across arbitrary geographic partitions. These results highlight a deep conceptual distinction between scale-free and scale-invariant networks, and provide a geometry-free route to renormalization.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.