Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

First Measurement of the $ν_e$ and $ν_μ$ Interaction Cross Sections at the LHC with FASER's Emulsion Detector (2403.12520v2)

Published 19 Mar 2024 in hep-ex, physics.ins-det, and hep-ph

Abstract: This paper presents the first results of the study of high-energy electron and muon neutrino charged-current interactions in the FASER$\nu$ emulsion/tungsten detector of the FASER experiment at the LHC. A subset of the FASER$\nu$ volume, which corresponds to a target mass of 128.6~kg, was exposed to neutrinos from the LHC $pp$ collisions with a centre-of-mass energy of 13.6~TeV and an integrated luminosity of 9.5 fb${-1}$. Applying stringent selections requiring electrons with reconstructed energy above 200~GeV, four electron neutrino interaction candidate events are observed with an expected background of $0.025{+0.015}_{-0.010}$, leading to a statistical significance of 5.2$\sigma$. This is the first direct observation of electron neutrino interactions at a particle collider. Eight muon neutrino interaction candidate events are also detected, with an expected background of $0.22{+0.09}_{-0.07}$, leading to a statistical significance of 5.7$\sigma$. The signal events include neutrinos with energies in the TeV range, the highest-energy electron and muon neutrinos ever detected from an artificial source. The energy-independent part of the interaction cross section per nucleon is measured over an energy range of 560--1740 GeV (520--1760 GeV) for $\nu_e$ ($\nu_{\mu}$) to be $(1.2_{-0.7}{+0.8}) \times 10{-38}~\mathrm{cm}{2}\,\mathrm{GeV}{-1}$ ($(0.5\pm0.2) \times 10{-38}~\mathrm{cm}{2}\,\mathrm{GeV}{-1}$), consistent with Standard Model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. arXiv:1708.09389, doi:10.1103/PhysRevD.97.035001.
  2. FASER Collaboration, Letter of Intent for FASER: ForwArd Search ExpeRiment at the LHC (2018). arXiv:1811.10243.
  3. FASER Collaboration, Technical Proposal for FASER: ForwArd Search ExpeRiment at the LHC (2018). arXiv:1812.09139.
  4. doi:10.1088/1748-0221/3/08/S08001.
  5. arXiv:1908.02310, doi:10.1140/epjc/s10052-020-7631-5.
  6. FASER Collaboration, Technical Proposal: FASERnu (1 2020). arXiv:2001.03073.
  7. FASER Collaboration, The FASER Detector (2022). arXiv:2207.11427.
  8. arXiv:2105.06197, doi:10.1103/PhysRevD.104.L091101.
  9. arXiv:2303.14185, doi:10.1103/PhysRevLett.131.031801.
  10. arXiv:2002.08722.
  11. SND@LHC Collaboration, SND@LHC: The Scattering and Neutrino Detector at the LHC (10 2022). arXiv:2210.02784.
  12. arXiv:2305.09383, doi:10.1103/PhysRevLett.131.031802.
  13. arXiv:2109.10905, doi:10.1016/j.physrep.2022.04.004.
  14. arXiv:2203.05090, doi:10.1088/1361-6471/ac865e.
  15. arXiv:2309.09581.
  16. doi:10.1007/978-3-030-35318-6_9. URL https://doi.org/10.1007/978-3-030-35318-6_9
  17. arXiv:2212.09379, doi:10.1140/epjc/s10052-023-11747-w.
  18. doi:10.1088/1748-0221/13/07/P07017.
  19. arXiv:1704.06814, doi:10.1093/ptep/ptx131.
  20. arXiv:1906.03487, doi:10.1007/JHEP01(2020)033.
  21. arXiv:2105.08270, doi:10.1103/PhysRevD.104.113008.
  22. FASER Collaboration, Neutrino Rate Predictions for FASER (2024). arXiv:2402.13318.
  23. doi:10.1103/PhysRevC.92.034906. URL https://link.aps.org/doi/10.1103/PhysRevC.92.034906
  24. doi:10.1103/PhysRevD.83.014018. URL https://link.aps.org/doi/10.1103/PhysRevD.83.014018
  25. arXiv:2203.11601.
  26. arXiv:2309.08604, doi:10.1103/PhysRevD.109.016010.
  27. arXiv:2309.12793.
  28. arXiv:0905.2517, doi:10.1016/j.nima.2009.12.009.
  29. arXiv:1510.05494.
  30. doi:10.1016/S0168-9002(03)01368-8.
  31. doi:10.2172/877507.
  32. doi:https://doi.org/10.1016/j.anucene.2014.11.007.
  33. doi:10.1088/0004-637X/760/2/146. URL https://dx.doi.org/10.1088/0004-637X/760/2/146
  34. doi:10.1088/1742-6596/160/1/012033. URL https://dx.doi.org/10.1088/1742-6596/160/1/012033
  35. doi:https://doi.org/10.1016/j.nima.2007.01.162.
  36. doi:10.1103/PhysRevD.105.012009. URL https://link.aps.org/doi/10.1103/PhysRevD.105.012009
  37. doi:https://doi.org/10.1016/j.nima.2016.06.125. URL http://www.sciencedirect.com/science/article/pii/S0168900216306957
  38. doi:10.1093/ptep/ptaa104. URL https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptaa104.pdf
  39. doi:10.1017/CBO9780511791277.013.
  40. doi:10.1103/PhysRevD.41.2653.
  41. arXiv:0711.0728, doi:10.1103/PhysRevD.78.052002.
  42. arXiv:0910.2201, doi:10.1103/PhysRevD.81.072002.
  43. arXiv:0711.1183, doi:10.1016/j.physletb.2007.12.027.
  44. arXiv:1302.4908, doi:10.1103/PhysRevD.87.092003.
  45. arXiv:1411.6264, doi:10.1103/PhysRevD.92.112003.
  46. arXiv:1407.4256, doi:10.1103/PhysRevD.90.052010.
  47. arXiv:1111.0103, doi:10.1103/PhysRevLett.108.161802.
  48. arXiv:1404.4809, doi:10.1103/PhysRevD.89.112003.
  49. doi:10.1103/PhysRevD.19.2521.
  50. doi:10.1007/BF01445406.
  51. doi:10.1007/BF01474659.
  52. doi:10.1103/PhysRevD.25.617.
  53. doi:10.1007/BF01596895.
  54. doi:10.2172/1421736.
  55. doi:10.1016/0370-2693(79)90303-4.
  56. doi:10.1016/0370-2693(81)90598-0.
  57. doi:10.1007/s002880050078.
  58. arXiv:hep-ex/0509010, doi:10.1103/PhysRevD.74.012008.
  59. arXiv:1011.2131, doi:10.1103/PhysRevD.83.012005.
  60. doi:https://doi.org/10.1016/0370-2693(79)90536-7. URL https://www.sciencedirect.com/science/article/pii/0370269379905367
  61. arXiv:1711.08119, doi:10.1038/nature24459.
  62. arXiv:1711.11043, doi:10.1103/PhysRevLett.122.041101.
  63. arXiv:2011.03560, doi:10.1103/PhysRevD.104.022001.
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 posts and received 47 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube