Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A fast low-rank inversion algorithm of dielectric matrix in GW approximation (2403.12340v2)

Published 19 Mar 2024 in math.NA and cs.NA

Abstract: The dielectric response function and its inverse are crucial physical quantities in materials science. We propose an accurate and efficient strategy to invert the dielectric function matrix. The GW approximation, a powerful approach to accurately describe many-body excited states, is taken as an application to demonstrate accuracy and efficiency. We incorporate the interpolative separable density fitting (ISDF) algorithm with Sherman--Morrison--Woodbury (SMW) formula to accelerate the inversion process by exploiting low-rank properties of dielectric function in plane-wave GW calculations. Our ISDF--SMW strategy produces accurate quasiparticle energies with $O(N_{\mathrm{r}}N_{\mathrm{e}}2)$ computational cost $(N_{\mathrm{e}}$ is the number of electrons and $N_{\mathrm{r}}=100$--$1000N_{\mathrm{e}}$ is the number of grid points) with negligible small error of $0.03$ eV for both complex molecules and solids. This new strategy for inverting the dielectric matrix can be (50\times) faster than the current state-of-the-art implementation in BerkeleyGW, resulting in two orders of magnitude speedup for total GW calculations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Experimental realization of a terahertz all-dielectric metasurface absorber. Opt. Express 25, 191–201 (2017).
  2. Fundamentals of Time-Dependent Density Functional Theory (Berlin, Heidelberg, Germany, Berlin, Heidelberg, Germany, 2012), 1st edn.
  3. Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).
  4. GW method with the self-consistent Sternheimer equation. Phys. Rev. B 81, 115105 (2010).
  5. The GW method. Rep. Prog. Phys. 61, 237–312 (1998).
  6. Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796 (1965).
  7. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).
  8. Enhanced static approximation to the electron self-energy operator for efficient calculation of quasiparticle energies. Phys. Rev. B 82, 195108 (2010).
  9. Ke, S.-H. All-electron G⁢W𝐺𝑊{GW}italic_G italic_W methods implemented in molecular orbital space: Ionization energy and electron affinity of conjugated molecules. Phys. Rev. B 84, 205415 (2011).
  10. Liu, F. et al. Numerical integration for ab initio many-electron self energy calculations within the GW approximation. J. Comput. Phys. 286, 1–13 (2015).
  11. Quasiparticle band structure and optical spectrum of CaF22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT. Phys. Rev. B 75, 205114 (2007).
  12. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).
  13. The role of defects and excess surface charges at finite temperature for optimizing oxide photoabsorbers. Nat. Mater. 17, 1122–1127 (2018).
  14. GWΓ+limit-fromΓ\Gamma+roman_Γ + Bethe–Salpeter equation approach for photoabsorption spectra: importance of self-consistent GWΓΓ\Gammaroman_Γ calculations in small atomic systems. Phys. Rev. B 94, 121116 (2016).
  15. Quasiparticle self-consistent G⁢W𝐺𝑊GWitalic_G italic_W theory. Phys. Rev. Lett. 96, 226402 (2006).
  16. Del Ben, M. et al. Accelerating large-scale excited-state GW calculations on leadership HPC systems. In SC20: International Conference for High Performance Computing, Networking, Storage and Analysis, 1–11 (Institute of Electrical and Electronics Engineers, 2020).
  17. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics: Condensed Matter 21, 395502 (2009).
  18. Compression of the electron repulsion integral tensor in tensor hypercontraction format with cubic scaling cost. J. Comput. Phys. 302, 329–335 (2015).
  19. Interpolative separable density fitting decomposition for accelerating hybrid density functional calculations with applications to defects in silicon. J. Chem. Theory Comput. 13, 5420–5431 (2017).
  20. Cubic scaling algorithms for RPA correlation using interpolative separable density fitting. J. Comput. Phys. 351, 187–202 (2017).
  21. Accelerating time-dependent density functional theory and GW calculations for molecules and nanoclusters with symmetry adapted interpolative separable density fitting. J. Chem. Theory Comput. 16, 2216–2223 (2020).
  22. Ma, H. et al. Realizing effective cubic-scaling Coulomb hole plus screened exchange approximation in periodic systems via interpolative separable density fitting with a plane-wave basis set. J. Phys. Chem. A 125, 7545–7557 (2021).
  23. Jiao, S. et al. KSSOLV 2.0: An efficient MATLAB toolbox for solving the Kohn-Sham equations with plane-wave basis set. Comput. Phys. Commun. 279, 108424 (2022).
  24. Effects of electron-electron and electron-phonon interactions on the one-electron states of solids. Solid State Phys. 23, 1–181 (1970).
  25. Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988).
  26. Space-time method for ab initio calculations of self-energies and dielectric response functions of solids. Phys. Rev. Lett. 74, 1827–1830 (1995).
  27. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).
  28. Interpolative separable density fitting through Centroidal Voronoi Tessellation with applications to hybrid functional electronic structure calculations. J. Chem. Theory Comput. 14, 1311–1320 (2018).
  29. Hager, W. W. Updating the inverse of a matrix. SIAM Rev. 31, 221–239 (1989).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.