Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact Thermal Eigenstates of Nonintegrable Spin Chains at Infinite Temperature (2403.12330v4)

Published 19 Mar 2024 in cond-mat.stat-mech and quant-ph

Abstract: The eigenstate thermalization hypothesis (ETH) plays a major role in explaining thermalization of isolated quantum many-body systems. However, there has been no proof of the ETH in realistic systems due to the difficulty in the theoretical treatment of thermal energy eigenstates of nonintegrable systems. Here, we write down analytically thermal eigenstates of nonintegrable spin chains. We consider a class of theoretically tractable volume-law states, which we call entangled antipodal pair (EAP) states. These states are thermal, in the most fundamental sense that they are indistinguishable from the Gibbs state with respect to all local observables, with infinite temperature. We then identify Hamiltonians having the EAP state as an eigenstate and rigorously show that some of these Hamiltonians are nonintegrable. Furthermore, a thermal pure state at an arbitrary temperature is obtained by the imaginary time evolution of an EAP state. Our results offer a potential avenue for providing a provable example of the ETH.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. C. Gogolin and J. Eisert, Rep. Prog. Phys. 79, 056001 (2016).
  2. J. von Neumann, Z. Phys. 57, 30 (1929).
  3. J. M. Deutsch, Phys. Rev. A 43, 2046 (1991).
  4. M. Srednicki, Phys. Rev. E 50, 888 (1994).
  5. M. Rigol, V. Dunjko, and M. Olshanii, Nature 452, 854 (2008).
  6. H. Kim, T. N. Ikeda, and D. A. Huse, Phys. Rev. E 90, 052105 (2014).
  7. W. Beugeling, R. Moessner, and M. Haque, Phys. Rev. E 89, 042112 (2014).
  8. F. Verstraete, V. Murg, and J. Cirac, Adv. Phys. 57, 143 (2008).
  9. U. Schollwöck, Ann. Phys. 326, 96 (2011).
  10. M. Fannes, B. Nachtergaele, and R. F. Werner, Europhys. Lett. 10, 633 (1989).
  11. G. Vitagliano, A. Riera, and J. I. Latorre, New J. Phys. 12, 113049 (2010).
  12. G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, J. Stat. Mech. 2014, P10004 (2014).
  13. G. Ramírez, J. Rodríguez-Laguna, and G. Sierra, J. Stat. Mech. 2015, P06002 (2015).
  14. V. Bettaque and B. Swingle, NoRA: A Tensor Network Ansatz for Volume-Law Entangled Equilibrium States of Highly Connected Hamiltonians (2023).
  15. See Supplemental Material for the detailed derivations and discussion.
  16. H. Tasaki, Macroscopic Irreversibility in Quantum Systems: ETH and Equilibration in a Free Fermion Chain (2024).
  17. There are only two solutions whose Hamiltonians are noninteracting [19].
  18. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, San Diego, 1982).
  19. V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, 1993).
  20. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, 1999).
  21. S. Sugiura and A. Shimizu, Phys. Rev. Lett. 111, 010401 (2013).
  22. Y. Chiba, Phys. Rev. B 109, 035123 (2024).
  23. N. Shiraishi, Europhys. Lett. 128, 17002 (2019).
  24. M. L. Mehta, Random Matrices, 3rd ed. (Academic Press, New York, 2004).
  25. To remove the possibility of accidental discrete symmetries, we avoid eigenspace of special wavenumber such as 00 and π𝜋\piitalic_π.
  26. We can always take Jz⁢y=0superscript𝐽𝑧𝑦0J^{zy}=0italic_J start_POSTSUPERSCRIPT italic_z italic_y end_POSTSUPERSCRIPT = 0 by an approprite rotation around y𝑦yitalic_y axis.
  27. H. Araki, Commun. Math. Phys. 14, 120 (1969).
  28. H. Araki, Commun. Math. Phys. 44, 1 (1975).
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: