Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the upper bound of wavefront sets of representations of p-adic groups

Published 18 Mar 2024 in math.RT and math.NT | (2403.11976v2)

Abstract: In this paper we study the upper bound of wavefront sets of irreducible admissible representations of connected reductive groups defined over non-Archimedean local fields of characteristic zero. We formulate a new conjecture on the upper bound and show that it can be reduced to that of anti-discrete series representations, namely, those whose Aubert-Zelevinsky duals are discrete series. Then, we show that this conjecture is equivalent to the Jiang conjecture on the upper bound of wavefront sets of representations in local Arthur packets and also equivalent to an analogous conjecture on the upper bound of wavefront sets of representations in local ABV packets.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.