Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 104 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Kimi K2 216 tok/s Pro
2000 character limit reached

A meshless and binless approach to compute statistics in 3D Ensemble PTV (2403.11828v3)

Published 18 Mar 2024 in physics.flu-dyn

Abstract: We propose a method to obtain superresolution of turbulent statistics for three-dimensional ensemble particle tracking velocimetry (EPTV). The method is ''meshless'' because it does not require the definition of a grid for computing derivatives, and it is ''binless'' because it does not require the definition of bins to compute local statistics. The method combines the constrained radial basis function (RBF) formalism introduced Sperotto et al. (Meas Sci Technol, 33:094005, 2022) with a kernel estimate approach for the ensemble averaging of the RBF regressions. The computational cost for the RBF regression is alleviated using the partition of unity method (PUM). Three test cases are considered: (1) a 1D illustrative problem on a Gaussian process, (2) a 3D synthetic test case reproducing a 3D jet-like flow, and (3) an experimental dataset collected for an underwater jet flow at $\text{Re} = 6750$ using a four-camera 3D PTV system. For each test case, the method performances are compared to traditional binning approaches such as Gaussian weighting (Ag\"u\'i and Jim\'enez, JFM, 185:447-468, 1987), local polynomial fitting (Ag\"uera et al, Meas Sci Technol, 27:124011, 2016), as well as a binned version of the RBF statistics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.