Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 110 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Three-Dimensional Time Resolved Lagrangian Flow Field Reconstruction Based on Constrained Least Squares and Stable Radial Basis Function (2308.09227v1)

Published 18 Aug 2023 in physics.flu-dyn

Abstract: The three-dimensional Time-Resolved Lagrangian Particle Tracking (3D TR-LPT) technique has recently advanced flow diagnostics by providing high spatiotemporal resolution measurements under the Lagrangian framework. To fully exploit its potential, accurate and robust data processing algorithms are needed. These algorithms are responsible for reconstructing particle trajectories, velocities, and differential quantities (e.g., pressure gradients, strain- and rotation-rate tensors, and coherent structures) from raw LPT data. In this paper, we propose a three-dimensional (3D) divergence-free Lagrangian reconstruction method, where three foundation algorithms -- Constrained Least Squares (CLS), stable Radial Basis Function (RBF-QR), and Partition-of-Unity Method (PUM) -- are integrated into one comprehensive reconstruction strategy. Our method, named CLS-RBF PUM, is able to (i) directly reconstruct flow fields at scattered data points, avoiding Lagrangian-to-Eulerian data conversions; (ii) assimilate the flow diagnostics in Lagrangian and Eulerian descriptions to achieve high-accuracy flow reconstruction; (iii) process large-scale LPT data sets with more than hundreds of thousand particles in two dimensions (2D) or 3D; (iv) enable spatiotemporal super-resolution while imposing physical constraints (e.g., divergence-free for incompressible flows) at arbitrary time and location. Validation based on synthetic and experimental LPT data confirmed that our method can consistently achieve the above advantages with accuracy and robustness.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)