Home Spaces and Invariants to Analyze Parameterized Petri Nets (2403.11779v1)
Abstract: This article focuses on comparing the notions of home spaces and invariants, in Transition Systems and more particularly, in Petri Nets as well as a variety of derived Petri Nets. After recalling basic notions of Petri Nets and semiflows, we then discuss important characteristics of finite generating sets for F, the set of all semiflows with integer coordinates of a given Petri Net. Then, we particularly focus on F+ the set of semiflows with non-negative coordinates. Minimality of semiflows and minimality of supports are critical to develop effective analysis of invariants and behavioral properties of Petri Nets such as boundedness or even liveness. We recall known decomposition theorems considering N, Q+, or Q. The result over N is being improved into a necessary and sufficient condition. In addition, we present general new results about the topology and the behavioral properties of a Petri Net, illustrating the importance of considering semiflows with non-negative coordinates. Then, we regroup a number of results around the notion of home space and home state applied to transition systems. Home spaces and semiflows are used to efficiently support the analysis of behavioral properties. In this regard, we present a methodology to analyze a Petri Nets by successive refinement of home spaces directly deduced from semiflows and apply it to analyze a parameterized example drawn from the telecommunication industry underlining the efficiency brought by using minimal semiflows of minimal supports as well as the new results on the topology of the model. This methodology is better articulated than in previous papers, and brings us closer to an automated analysis.
- N. Alon and K. A. Berman. Regular hypergraphs, gordon’s lemma, steinitz’ lemma and invariant theory. J. of Combinatorial Theory, A, 43:pp. 91–97, 1986.
- Structural invariants for the verification of systems with parameterized architectures. In A. Biere and D. Parker, editors, Tools and Algorithms for the Construction and Analysis of Systems, pages 228–246, Cham, (2020). Springer Int. Pub.
- G. W. Brams. Réseaux de Petri: Théorie et Pratique. Masson, Paris, France, 1982.
- P-semiflow computation with decision diagrams. In Wolf K. (eds) Franceschinis G., editor, ATPN, Petri Nets 2009, LNCS 5606, pages 143–162. Springer, Berlin, Heidelberg, (2009).
- J. M. Colom and M. Silva. Convex geometry and semiflows in P/T nets. A comparative study of algorithms for computation of minimal p-semiflows. In G. Rozenberg, editor, Advances in Petri Nets 1990 [10thsuperscript10𝑡ℎ10^{th}10 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT Int. Conf. on ATPN, Bonn, Germany, Proc.], LNCS 483, pages 79–112. Springer, 1989.
- Properties. In C. Girault and R. Valk, editors, Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications, pages 53–72. Springer Berlin Heidelberg, 2003.
- Structural methods. In C. Girault and R. Valk, editors, Petri Nets for Systems Engineering, A guide to Modeling, Verification, and Applications, pages 277–316. Springer Berlin Heidelberg, 2003.
- Structural place invariants for analyzing the behavioral properties of nested petri nets. In F. Kordon and D. Moldt, editors, ATPN and Concurrency, pages 325–344, Cham, 2016. Springer Int. Pub.
- Attacking symbolic state explosion. In Proc. of the 13thsuperscript13𝑡ℎ13^{th}13 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT International Conference on Computer Aided Verification, CAV 2001, LNCS 2102, pages 298–310. Springer, (2001).
- D. Frutos Escrig and C. Johnen. Decidability of home space property. Technical report, Université Paris-Saclay, LRI, UA CNRS 410, RR n 503, 1989.
- A. Finkel and M. Hilaire. Resilience and home-space for wsts. In Rayna Dimitrova, Ori Lahav, and Sebastian Wolff, editors, Verification, Model Checking, and Abstract Interpretation, pages 147–168, Cham, 2024. Springer Nature Switzerland.
- A. Finkel. The minimal coverability graph for petri nets. in W. Reisig and G. Rozenberg (Eds) Advances in Petri Nets, LNCS 674, pages pp. 210–243, 1993.
- C. Girault and R. Valk. Petri Nets for Systems Engineering, A guide to Modeling, Verification, and Applications. Springer, 2003.
- Polynomial sufficient conditions of well-behavedness and home markings in subclasses of weighted petri nets. ACM Trans. Embed. Comput. Syst., 13(4s):141:1–141:25, 2014.
- Conditions for extinction events in chemical reaction networks with discrete state spaces. J. Mathematical Biology, 76,6:pp. 1535––1558, 2018.
- P. Jančar and J. Leroux. Semilinear home-space is decidable for petri nets. arXiv 2207.02697, 2022.
- F. Krückeberg and M. Jaxy. Mathematical methods for calculating invariants in petri nets. In G. Rozenberg, editor, Advances in Petri Nets 1987, pages 104–131. Springer Berlin Heidelberg, 1987.
- S. Lang. Algebra, 3rdsuperscript3𝑟𝑑3^{rd}3 start_POSTSUPERSCRIPT italic_r italic_d end_POSTSUPERSCRIPT revised Ed. GTM, Springer, 2002.
- G. Memmi. Semiflows and invariants. application in petri nets theory. in Journées d’Etudes sur les Réseaux de Petri AFCET-Institut de Programmation), pages pp. 145–150, 1977.
- G. Memmi. Fuites et Semi-flots dans les Réseaux de Petri. Thèse de Docteur-Ingénieur, U. P. et M. Curie, Paris, France, 1978.
- G. Memmi. Methodes d’analyse de Réseaux de Petri, Réseaux a Files, Applications au temps reel. Thèse d’Etat, U. P. et M. Curie, Paris, France, 1983.
- Gerard Memmi. Minimal generating sets for semiflows. In Marieke Huisman and António Ravara, editors, Formal Techniques for Distributed Objects, Components, and Systems, pages 189–205, Cham, 2023. Springer Nature Switzerland.
- G. Memmi and A. Finkel. An introduction to fifo nets-monogeneous nets: A subclass of fifo nets. Theor. Comput. Sci., 35:191–214, 1985.
- R. Martin and G. Memmi. Specification and validation of sequential processes communicating by fifo channels. In 4thsuperscript4𝑡ℎ4^{th}4 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT Int. Conf. on Software Engineering for Telecommunication Switching Systems, Warwick U. Conventry, U.K, pages 54–57. SIEE, 1981.
- T. Oda. Convex Bodies and Algebraic Geometry (An Introduction to the Theory of Toric Varieties). Springer, 2012.
- J. Sifakis. Structural properties of petri nets. In J. Winkowski, editor, MFCS 1978, Proc. 7thsuperscript7𝑡ℎ7^{th}7 start_POSTSUPERSCRIPT italic_t italic_h end_POSTSUPERSCRIPT Symp., Zakopane, Poland, volume 64 of LNCS, pages 474–483. Springer, (1978).
- Linear algebraic and linear programming techniques for the analysis of place/transition net systems, pages 309–373. Springer Berlin Heidelberg, 1998.
- The residue of vector sets with applications to decidability problems in petri nets. Acta Informatica, 21:643–674, 1985.
- J. Vautherin and G. Memmi. Computation of flows for unary-predicates/transition-nets. In G. Rozenberg, H. Genrich, and G. Roucairol, editors, Advances in Petri Nets 1984, European Workshop on Applications and Theory in Petri Nets, selected papers, volume 188 of LNCS, pages 455–467. Springer, 1984.
- K. Wolf. How Petri Net Theory Serves Petri Net Model Checking: A Survey, pages 36–63. Springer Berlin Heidelberg, 2019.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.