Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Designs in finite classical polar spaces (2403.11188v2)

Published 17 Mar 2024 in math.CO

Abstract: Combinatorial designs have been studied for nearly 200 years. 50 years ago, Cameron, Delsarte, and Ray-Chaudhury started investigating their $q$-analogs, also known as subspace designs or designs over finite fields. Designs can be defined analogously in finite classical polar spaces, too. The definition includes the $m$-regular systems from projective geometry as the special case where the blocks are generators of the polar space. The first nontrivial such designs for $t > 1$ were found by De Bruyn and Vanhove in 2012, and some more designs appeared recently in the PhD thesis of Lansdown. In this article, we investigate the theory of classical and subspace designs for applicability to designs in polar spaces, explicitly allowing arbitrary block dimensions. In this way, we obtain divisibility conditions on the parameters, derived and residual designs, intersection numbers and an analog of Fisher's inequality. We classify the parameters of symmetric designs. Furthermore, we conduct a computer search to construct designs of strength $t=2$, resulting in designs for more than 140 previously unknown parameter sets in various classical polar spaces over $\mathbb{F}_2$ and $\mathbb{F}_3$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.