A minimal model of inelastic tunneling of vibrating magnetic molecules on superconducting substrates (2403.10852v3)
Abstract: We present an efficient method of calculating the vibrational spectrum of a magnetic molecule adsorbed on a superconductor, directly related to the first derivative of the tunneling $IV$ curve. The work is motivated by a recent scanning-tunneling spectroscopy of lead phthalocyanine on superconducting Pb(100), showing a wealth of vibrational excitations, the number of which highly exceeds molecular vibrations typically encountered on normal metals. We design a minimal model which represents the inelastic transitions by the spectral function of a frontier orbital of the molecule in isolation. The model allows for an exact solution; otherwise the full correlated superconducting problem would be hard to treat. The model parameters are supplied from an ab-initio calculation, where the presence of the surface on the deformation of molecular geometry can be taken into account. The spectral function of the highest-occupied molecular orbital of the anionic PbPc${1-}$ shows the best agreement with the experimental reference among other molecular charge states and orbitals. The method allows to include multiple vibrational transitions straightforwardly.
- J.-P. Gauyacq, N. Lorente, and F. D. Novaes, Excitation of local magnetic moments by tunneling electrons, Prog. Surf. Sci. 87, 63 (2012).
- J. Tersoff and D. R. Hamann, Theory of the scanning tunneling microscope, Phys. Rev. B 31, 805 (1985).
- Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68, 2512 (1992).
- P. Coleman, Introduction to Many-Body Physics (Cambridge University Press, 2015) Chap. 9.7.2.
- A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Impurity-induced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78, 373 (2006).
- G. D. Mahan, Many-Particle Physics (Springer Science & Business Media, 2000).
- A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford Graduate Texts, 2006) Chap. 12.5.3, p. 444.
- O. Treutler and R. Ahlrichs, Efficient molecular numerical integration schemes, J. Chem. Phys. 102, 346–354 (1995).
- M. Von Arnim and R. Ahlrichs, Performance of parallel TURBOMOLE for density functional calculations, J. Comp. Chem. 19, 1746 (1998).
- F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys. 7, 3297 (2005).
- F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn, Phys. Chem. Chem. Phys. 8, 1057 (2006).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77, 3865 (1996).
- A. D. Becke, Density‐functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98, 5648–5652 (1993).
- C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B 37, 785 (1988).
- A. Koliogiorgos, S. Baskoutas, and I. Galanakis, Electronic and gap properties of lead-free perfect and mixed hybrid halide perovskites: An ab-initio study, Comp. Mater. Sci. 138, 92 (2017).
- J. B. Homberg, Yu-Shiba-Rusinov States of Molecules on Pb(100), Ph.D. thesis, Christian-Albrechts-Universität zu Kiel, Mathematisch-Naturwissenschaftliche Fakultät (2022).
- P. Deglmann, F. Furche, and R. Ahlrichs, An efficient implementation of second analytical derivatives for density functional methods, Chem. Phys. Lett. 362, 511 (2002).
- P. Deglmann and F. Furche, Efficient characterization of stationary points on potential energy surfaces, J. Chem. Phys. 117, 9535–9538 (2002).
- K. Reiter, M. Kühn, and F. Weigend, Vibrational circular dichroism spectra for large molecules and molecules with heavy elements, J. Chem. Phys. 146, 054102 (2017).
- J. Tóbik and E. Tosatti, Jahn–Teller effect in the magnesium phthalocyanine anion, Journal of molecular structure 838, 112 (2007).
- R. Korytár and N. Lorente, Multi-orbital non-crossing approximation from maximally localized Wannier functions: the Kondo signature of copper phthalocyanine on Ag (100), J. Phys.: Condens. Matter 23, 355009 (2011).
- M. Frankerl and A. Donarini, Spin-orbit interaction induces charge beatings in a lightwave-STM – single molecule junction, Phys. Rev. B 103, 085420 (2021).
- R. Žitko, Spectral properties of Shiba subgap states at finite temperatures, Phys. Rev. B 93, 195125 (2016).
- P. Zalom, Rigorous Wilsonian renormalization group for impurity models with a spectral gap, Phys. Rev. B 108, 195123 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.