Papers
Topics
Authors
Recent
2000 character limit reached

Holographic Phase Retrieval via Wirtinger Flow: Cartesian Form with Auxiliary Amplitude

Published 14 Mar 2024 in cs.IT, cs.GR, cs.NA, eess.IV, math.IT, and math.NA | (2403.10560v3)

Abstract: We propose a new gradient method for holography, where a phase-only hologram is parameterized by not only the phase but also amplitude. The key idea of our approach is the formulation of a phase-only hologram using an auxiliary amplitude. We optimize the parameters using the so-called Wirtinger flow algorithm in the Cartesian domain, which is a gradient method defined on the basis of the Wirtinger calculus. At the early stage of optimization, each element of the hologram exists inside a complex circle, and it can take a large gradient while diverging from the origin. This characteristic contributes to accelerating the gradient descent. Meanwhile, at the final stage of optimization, each element evolves along a complex circle, similar to previous state-of-the-art gradient methods. The experimental results demonstrate that our method outperforms previous methods, primarily due to the optimization of the amplitude.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. D. Gabor, “A new microscopic principle,” \JournalTitleNature 161, 97–123 (1948).
  2. Y. Denisyuk, “Photographic reconstruction of the optical properties of an object in its own scattered radiation field,” \JournalTitleDokl. Phys. 7, 543–545 (1962).
  3. G. Lippmann, “La photographie des couleurs,” \JournalTitleC. R. Hebd. Séanc. Acad. Sci. Paris 112, 274–275 (1891).
  4. B. Javidi, A. Carnicer, A. Anand, et al., “Roadmap on digital holography,” \JournalTitleOptics Express 29, 35078–35118 (2021).
  5. Y. Yang, A. Forbes, and L. Cao, “A review of liquid crystal spatial light modulators: devices and applications,” \JournalTitleOpto-Electron Science 2 (2023).
  6. E. Sahin, E. Stoykova, J. Mäkinen, and A. Gotchev, “Computer-generated holograms for 3D imaging: a survey,” \JournalTitleACM Computing Survey 2, 1–15 (2020).
  7. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” \JournalTitleOptik 35, 237–246 (1972).
  8. R. Fienup, “Phase retrieval algorithms: a comparison,” \JournalTitleApplied Optics 21, 2758–2769 (1982).
  9. P. Netrapalli, P. Jain, and S. Sanghavi, “Phase retrieval using alternating minimization,” \JournalTitleIEEE Transactions on Signal Processing 63, 4814–4826 (2015).
  10. P. Chakravarthula, Y. Peng, J. Kollin, et al., “Wirtinger holography for near-eye displays,” \JournalTitleACM Transactions on Graphics 38, 1–13 (2019).
  11. M. Guendy, R. Mouthaan, B. Wetherfield, et al., “Kaczmarz holography: holographic projection in the Fraunhofer region,” \JournalTitleOptical Engineering 60 (2021).
  12. S. Kaczmarz, “Angenaherte auflosung von systemen linearer gleichungen,” \JournalTitleBulletin International de l’Académie Polonaise des Sciences et des Lettres 35, 355–357 (1937).
  13. Y. Zhang, M. Zhang, K. Liu, et al., “Progress of the computer-generated holography based on deep learning,” \JournalTitleAppl. Sci. 12 (2022).
  14. P. Chakravarthula, E. Tseng, T. Srivastava, et al., “Learned hardware-in-the-loop phase retrieval for holographic near-eye displays,” \JournalTitleACM Transactions on Graphics 39, 1–18 (2020).
  15. Y. Peng, S. Choi, N. Padmanaban, and G. Wetzstein, “Neural holography with camera-in-the-loop training,” \JournalTitleACM Transactions on Graphics 39, 1–14 (2020).
  16. Y. Wang, P. Chakravarthula, Q. Sun, and B. Chen, “Joint neural phase retrieval and compression for energy- and computation-efficient holography on the edge,” \JournalTitleACM Transactions on Graphics 41, 1–16 (2022).
  17. Y. Chen and E. J. Candès, “Solving random quadratic systems of equations is nearly as easy as solving linear systems,” \JournalTitleAdvances in Neural Information Processing Systems 28 (2015).
  18. E. J. Candès, X. Li, and M. Soltanolkotabi, “Phase retrieval via Wirtinger flow: theory and algorithms,” \JournalTitleIEEE Transactions on Information Theory 61, 1985–2007 (2015).
  19. H. Zhang, Y. Liang, and Y. Chi, “A nonconvex approach for phase retrieval: reshaped Wirtinger flow and incremental algorithms,” \JournalTitleJournal of Machine Learning Research 18, 1–35 (2017).
  20. W. Wirtinger, “Zur formalen theorie der funktionen von mehr komplexen veränderlichen,” \JournalTitleMath. Ann. 97, 357–375 (1927).
  21. V. Bychkovsky, S. Paris, E. Chan, and F. Durand, “Learning photographic global tonal adjustment with a database of input/output image pairs,” \JournalTitleIEEE Conference on Computer Vision and Pattern Recognition pp. 97–104 (2011).
  22. N. Wiener, “Generalized harmonic analysis,” \JournalTitleActa Mathematica 55, 117–258 (1930).
  23. A. Khintchine, “Korrelationstheorie der stationaren stochastischen prozesse,” \JournalTitleMath. Ann. 109, 117–258 (1934).
  24. W. Young, “On the multiplication of successions of Fourier constants,” \JournalTitleProceedings of the Royal Society 87, 331–339 (1912).

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 4 tweets with 0 likes about this paper.