Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Spinfoam Models for Quantum Gravity: Overview (2403.09364v2)

Published 14 Mar 2024 in gr-qc

Abstract: In the quest of a physical theory of quantum gravity, spin foam models, or in short spinfoams, propose a well-defined path integral summing over quantized discrete space-time geometries. At the crossroad of topological quantum field theory, dynamical triangulations, Regge calculus, and loop quantum gravity, this framework provides a non-perturbative and background independent quantization of general relativity. It defines transition amplitudes between quantum states of geometry, and gives a precise picture of the Planck scale geometry with quantized areas and volumes. Gravity in three space-time dimensions is exactly quantized in terms of the Ponzano-Regge state-sum and Turaev-Viro topological invariants. In four space-time dimensions, gravity is formulated as a topological theory, of the BF type, with extra constraints, and hence quantized as a topological state-sum filled with defects. This leads to the Engle-Pereira-Rovelli-Livine (EPRL) spinfoam model, that can be used for explicit quantum gravity computations, for example for resolving the Big Bang singularity by a bounce or in black-to-white hole transition probability amplitudes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (119)
  1. M. Blau, “Lecture Notes on General Relativity,” 2023. Universität Bern, available on http://www.blau.itp.unibe.ch/GRLecturenotes.html.
  2. E. R. Livine, “The Spinfoam Framework for Quantum Gravity,” arXiv:1101.5061. Habilitation Thesis 2010, ENS de Lyon (France).
  3. A. Perez, “The Spin Foam Approach to Quantum Gravity,” Living Rev. Rel. 16 (2013) 3, arXiv:1205.2019.
  4. J. Engle and S. Speziale, Spin Foams: Foundations. 2023. arXiv:2310.20147.
  5. C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 11, 2014.
  6. L. Freidel, K. Krasnov, and R. Puzio, “BF description of higher dimensional gravity theories,” Adv. Theor. Math. Phys. 3 (1999) 1289–1324, arXiv:hep-th/9901069.
  7. G. Long, C.-Y. Lin, and Y. Ma, “Coherent intertwiner solution of simplicity constraint in all dimensional loop quantum gravity,” Phys. Rev. D 100 (2019), no. 6, 064065, arXiv:1906.06534.
  8. G. Long and Y. Ma, “General geometric operators in all dimensional loop quantum gravity,” Phys. Rev. D 101 (2020), no. 8, 084032, arXiv:2003.03952.
  9. Y. Ling and L. Smolin, “Supersymmetric spin networks and quantum supergravity,” Phys. Rev. D 61 (2000) 044008, arXiv:hep-th/9904016.
  10. Y. Ling and L. Smolin, “Eleven-dimensional supergravity as a constrained topological field theory,” Nucl. Phys. B 601 (2001) 191–208, arXiv:hep-th/0003285.
  11. Y. Ling, Extending loop quantum gravity to supergravity. PhD thesis, Imperial College (London, UK), 2002.
  12. Y. Ling, R.-S. Tung, and H.-Y. Guo, “Supergravity and Yang-Mills theories as generalized topological fields with constraints,” Phys. Rev. D 70 (2004) 044045, arXiv:hep-th/0310141.
  13. E. R. Livine and R. Oeckl, “Three-dimensional Quantum Supergravityand Supersymmetric Spin Foam Models,” Adv. Theor. Math. Phys. 7 (2003), no. 6, 951–1001, arXiv:hep-th/0307251.
  14. E. R. Livine and J. P. Ryan, “N=2 supersymmetric spin foams in three dimensions,” Class. Quant. Grav. 25 (2008) 175014, arXiv:0710.3540.
  15. V. Baccetti, E. R. Livine, and J. P. Ryan, “The Particle interpretation of N = 1 supersymmetric spin foams,” Class. Quant. Grav. 27 (2010) 225022, arXiv:1004.0672.
  16. M. P. Reisenberger and C. Rovelli, “’Sum over surfaces’ form of loop quantum gravity,” Phys. Rev. D 56 (1997) 3490–3508, arXiv:gr-qc/9612035.
  17. A. Perez, “The Spin-foam-representation of LQG,” arXiv:gr-qc/0601095.
  18. F. Archer and R. M. Williams, “The Turaev-Viro state sum model and three-dimensional quantum gravity,” Phys. Lett. B 273 (1991) 438–444.
  19. C. Rovelli, “The Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum gravity model in the loop representation basis,” Phys. Rev. D 48 (1993) 2702–2707, arXiv:hep-th/9304164.
  20. L. Freidel and D. Louapre, “Ponzano-Regge model revisited I: Gauge fixing, observables and interacting spinning particles,” Class. Quant. Grav. 21 (2004) 5685–5726, arXiv:hep-th/0401076.
  21. J. W. Barrett and I. Naish-Guzman, “The Ponzano-Regge model,” Class. Quant. Grav. 26 (2009) 155014, arXiv:0803.3319.
  22. J. Engle, E. Livine, R. Pereira, and C. Rovelli, “LQG vertex with finite Immirzi parameter,” Nucl. Phys. B 799 (2008) 136–149, arXiv:0711.0146.
  23. E. R. Livine and S. Speziale, “Consistently Solving the Simplicity Constraints for Spinfoam Quantum Gravity,” EPL 81 (2008), no. 5, 50004, arXiv:0708.1915.
  24. P. Donà, M. Fanizza, G. Sarno, and S. Speziale, “Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude,” Phys. Rev. D 100 (2019), no. 10, 106003, arXiv:1903.12624.
  25. J. C. Baez, “Spin foam models,” Class. Quant. Grav. 15 (1998) 1827–1858, arXiv:gr-qc/9709052.
  26. A. Ashtekar and J. Lewandowski, “Projective techniques and functional integration for gauge theories,” J. Math. Phys. 36 (1995) 2170–2191, arXiv:gr-qc/9411046.
  27. C. Rovelli and L. Smolin, “Spin networks and quantum gravity,” Phys. Rev. D 52 (1995) 5743–5759, arXiv:gr-qc/9505006.
  28. A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. 1: Area operators,” Class. Quant. Grav. 14 (1997) A55–A82, arXiv:gr-qc/9602046.
  29. A. Ashtekar and J. Lewandowski, “Quantum theory of geometry. 2. Volume operators,” Adv. Theor. Math. Phys. 1 (1998) 388–429, arXiv:gr-qc/9711031.
  30. L. Freidel and E. R. Livine, “The Fine Structure of SU(2) Intertwiners from U(N) Representations,” J. Math. Phys. 51 (2010) 082502, arXiv:0911.3553.
  31. E. Bianchi, P. Dona, and S. Speziale, “Polyhedra in loop quantum gravity,” Phys. Rev. D 83 (2011) 044035, arXiv:1009.3402.
  32. E. R. Livine, “Deformations of Polyhedra and Polygons by the Unitary Group,” J. Math. Phys. 54 (2013) 123504, arXiv:1307.2719.
  33. L. Freidel and S. Speziale, “Twisted geometries: A geometric parametrisation of SU(2) phase space,” Phys. Rev. D 82 (2010) 084040, arXiv:1001.2748.
  34. B. Dittrich and J. P. Ryan, “Simplicity in simplicial phase space,” Phys. Rev. D 82 (2010) 064026, arXiv:1006.4295.
  35. J. Brunnemann and T. Thiemann, “Simplification of the spectral analysis of the volume operator in loop quantum gravity,” Class. Quant. Grav. 23 (2006) 1289–1346, arXiv:gr-qc/0405060.
  36. E. Bianchi and H. M. Haggard, “Discreteness of the volume of space from Bohr-Sommerfeld quantization,” Phys. Rev. Lett. 107 (2011) 011301, arXiv:1102.5439.
  37. R. Penrose, “Angular momentum: an approach to combinatorial space-time,”. available online at https://math.ucr.edu/home/baez/penrose/.
  38. J. W. Barrett and B. W. Westbury, “Spherical categories,” Adv. Math. 143 (1999) 357–375, arXiv:hep-th/9310164.
  39. L. Freidel and E. R. Livine, “Ponzano-Regge model revisited III: Feynman diagrams and effective field theory,” Class. Quant. Grav. 23 (2006) 2021–2062, arXiv:hep-th/0502106.
  40. A. Baratin and L. Freidel, “Hidden Quantum Gravity in 3-D Feynman diagrams,” Class. Quant. Grav. 24 (2007) 1993–2026, arXiv:gr-qc/0604016.
  41. A. Baratin and L. Freidel, “Hidden Quantum Gravity in 4-D Feynman diagrams: Emergence of spin foams,” Class. Quant. Grav. 24 (2007) 2027–2060, arXiv:hep-th/0611042.
  42. D. V. Boulatov, “A Model of three-dimensional lattice gravity,” Mod. Phys. Lett. A 7 (1992) 1629–1646, arXiv:hep-th/9202074.
  43. R. De Pietri, L. Freidel, K. Krasnov, and C. Rovelli, “Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space,” Nucl. Phys. B 574 (2000) 785–806, arXiv:hep-th/9907154.
  44. M. P. Reisenberger and C. Rovelli, “Space-time as a Feynman diagram: The Connection formulation,” Class. Quant. Grav. 18 (2001) 121–140, arXiv:gr-qc/0002095.
  45. L. Freidel, “Group field theory: An Overview,” Int. J. Theor. Phys. 44 (2005) 1769–1783, arXiv:hep-th/0505016.
  46. D. Oriti, “The Group field theory approach to quantum gravity,” arXiv:gr-qc/0607032.
  47. B. Dittrich, F. C. Eckert, and M. Martin-Benito, “Coarse graining methods for spin net and spin foam models,” New J. Phys. 14 (2012) 035008, arXiv:1109.4927.
  48. Y. Ding and C. Rovelli, “Physical boundary Hilbert space and volume operator in the Lorentzian new spin-foam theory,” Class. Quant. Grav. 27 (2010) 205003, arXiv:1006.1294.
  49. M. Dupuis and E. R. Livine, “Lifting SU(2) Spin Networks to Projected Spin Networks,” Phys. Rev. D 82 (2010) 064044, arXiv:1008.4093.
  50. R. Oeckl and H. Pfeiffer, “The Dual of pure nonAbelian lattice gauge theory as a spin foam model,” Nucl. Phys. B 598 (2001) 400–426, arXiv:hep-th/0008095.
  51. A. Perez and C. Rovelli, “A Spin foam model without bubble divergences,” Nucl. Phys. B 599 (2001) 255–282, arXiv:gr-qc/0006107.
  52. F. Girelli, R. Oeckl, and A. Perez, “Spin foam diagrammatics and topological invariance,” Class. Quant. Grav. 19 (2002) 1093–1108, arXiv:gr-qc/0111022.
  53. B. Bahr, F. Hellmann, W. Kaminski, M. Kisielowski, and J. Lewandowski, “Operator Spin Foam Models,” Class. Quant. Grav. 28 (2011) 105003, arXiv:1010.4787.
  54. G. T. Horowitz, “Exactly Soluble Diffeomorphism Invariant Theories,” Commun. Math. Phys. 125 (1989) 417.
  55. D. B. Ray and I. M. Singer, “Analytic Torsion for Complex Manifolds,” Annals of Mathematics 98 (1973), no. 1, 154–177.
  56. V. Bonzom and M. Smerlak, “Bubble divergences from twisted cohomology,” Commun. Math. Phys. 312 (2012) 399–426, arXiv:1008.1476.
  57. V. Bonzom and M. Smerlak, “Gauge symmetries in spinfoam gravity: the case for ’cellular quantization’,” Phys. Rev. Lett. 108 (2012) 241303, arXiv:1201.4996.
  58. M. P. Reisenberger, “A Lattice world sheet sum for 4-d Euclidean general relativity,” arXiv:gr-qc/9711052.
  59. L. Freidel, “A Ponzano-Regge model of Lorentzian 3-dimensional gravity,” Nucl. Phys. B Proc. Suppl. 88 (2000) 237–240, arXiv:gr-qc/0102098.
  60. S. Davids, A State sum model for (2+1) Lorentzian quantum gravity. PhD thesis, Nottingham University (UK), 2000. arXiv:gr-qc/0110114.
  61. G. Ponzano and T. Regge, “Semiclassical Limit of Racah Coefficients,” pp 1-58 of Spectroscopic and Group Theoretical Methods in Physics. Block, F. (ed.). New York, John Wiley and Sons, Inc., 1968. (10, 1969).
  62. Wikipedia, “6-j symbol — Wikipedia, The Free Encyclopedia.” https://en.wikipedia.org/wiki/6-j_symbol, 2023. [Online; accessed 24-November-2023].
  63. K. Schulten and R. G. Gordon, “Semiclassical Approximations to 3j and 6j coefficients for Quantum Mechanical Coupling of Angular Momenta,” J. Math. Phys. 16 (1975) 1971–1988.
  64. J. Roberts, “Classical 6j-symbols and the tetrahedron,” Geom. Topol. 3 (1999), no. 1, 21–66, arXiv:math-ph/9812013.
  65. J. W. Barrett and C. M. Steele, “Asymptotics of relativistic spin networks,” Class. Quant. Grav. 20 (2003) 1341–1362, arXiv:gr-qc/0209023.
  66. L. Freidel and D. Louapre, “Asymptotics of 6j and 10j symbols,” Class. Quant. Grav. 20 (2003) 1267–1294, arXiv:hep-th/0209134.
  67. H. Ooguri, “Partition functions and topology changing amplitudes in the 3-D lattice gravity of Ponzano and Regge,” Nucl. Phys. B 382 (1992) 276–304, arXiv:hep-th/9112072.
  68. K. Schulten and R. G. Gordon, “Exact Recursive Evaluation of 3J and 6J Coefficients for Quantum Mechanical Coupling of Angular Momenta,” J. Math. Phys. 16 (1975) 1961–1970.
  69. V. Bonzom and E. R. Livine, “A New Recursion Relation for the 6j-Symbol,” Annales Henri Poincare 13 (2012) 1083–1099, arXiv:1103.3415.
  70. V. Bonzom and L. Freidel, “The Hamiltonian constraint in 3d Riemannian loop quantum gravity,” Class. Quant. Grav. 28 (2011) 195006, arXiv:1101.3524.
  71. L. Freidel and D. Louapre, “Ponzano-Regge model revisited II: Equivalence with Chern-Simons,” arXiv:gr-qc/0410141.
  72. J. W. Barrett and T. J. Foxon, “Semiclassical limits of simplicial quantum gravity,” Class. Quant. Grav. 11 (1994) 543–556, arXiv:gr-qc/9310016.
  73. V. Bonzom, F. Costantino, and E. R. Livine, “Duality between Spin networks and the 2D Ising model,” Commun. Math. Phys. 344 (2016), no. 2, 531–579, arXiv:1504.02822.
  74. B. Dittrich, C. Goeller, E. Livine, and A. Riello, “Quasi-local holographic dualities in non-perturbative 3d quantum gravity I – Convergence of multiple approaches and examples of Ponzano–Regge statistical duals,” Nucl. Phys. B 938 (2019) 807–877, arXiv:1710.04202.
  75. V. G. Turaev and O. Y. Viro, “State sum invariants of 3 manifolds and quantum 6j symbols,” Topology 31 (1992) 865–902.
  76. E. Witten, “(2+1)-Dimensional Gravity as an Exactly Soluble System,” Nucl. Phys. B 311 (1988) 46.
  77. E. Witten, “Quantum Field Theory and the Jones Polynomial,” Commun. Math. Phys. 121 (1989) 351–399.
  78. B. Dittrich and M. Geiller, “Quantum gravity kinematics from extended TQFTs,” New J. Phys. 19 (2017), no. 1, 013003, arXiv:1604.05195.
  79. M. Dupuis, L. Freidel, and F. Girelli, “Discretization of 3d gravity in different polarizations,” Phys. Rev. D 96 (2017), no. 8, 086017, arXiv:1701.02439.
  80. E. R. Livine, “3d Quantum Gravity: Coarse-Graining and q𝑞qitalic_q-Deformation,” Annales Henri Poincare 18 (2017), no. 4, 1465–1491, arXiv:1610.02716.
  81. N. Y. Reshetikhin and V. G. Turaev, “Ribbon graphs and their invariants derived from quantum groups,” Commun. Math. Phys. 127 (1990) 1–26.
  82. R. De Pietri and L. Freidel, “so(4) Plebanski action and relativistic spin foam model,” Class. Quant. Grav. 16 (1999) 2187–2196, arXiv:gr-qc/9804071.
  83. S. Holst, “Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action,” Phys. Rev. D 53 (1996) 5966–5969, arXiv:gr-qc/9511026.
  84. A. Perez and C. Rovelli, “Physical effects of the Immirzi parameter,” Phys. Rev. D 73 (2006) 044013, arXiv:gr-qc/0505081.
  85. L. Freidel, D. Minic, and T. Takeuchi, “Quantum gravity, torsion, parity violation and all that,” Phys. Rev. D 72 (2005) 104002, arXiv:hep-th/0507253.
  86. L. Freidel and S. Speziale, “On the relations between gravity and BF theories,” SIGMA 8 (2012) 032, arXiv:1201.4247.
  87. K. Krasnov, “Gravity as BF theory plus potential,” Int. J. Mod. Phys. A 24 (2009) 2776–2782, arXiv:0907.4064.
  88. L. Freidel and A. Starodubtsev, “Quantum gravity in terms of topological observables,” arXiv:hep-th/0501191.
  89. L. Crane and D. Yetter, “A Categorical construction of 4-D topological quantum field theories,” 3, 1993. arXiv:hep-th/9301062.
  90. H. Pfeiffer, “Four-dimensional lattice gauge theory with ribbon categories and the Crane-Yetter state sum,” J. Math. Phys. 42 (2001) 5272–5305, arXiv:hep-th/0106029.
  91. S. Alexandrov and E. R. Livine, “SU(2) loop quantum gravity seen from covariant theory,” Phys. Rev. D 67 (2003) 044009, arXiv:gr-qc/0209105.
  92. J. W. Barrett and L. Crane, “A Lorentzian signature model for quantum general relativity,” Class. Quant. Grav. 17 (2000) 3101–3118, arXiv:gr-qc/9904025.
  93. A. Perez and C. Rovelli, “Spin foam model for Lorentzian general relativity,” Phys. Rev. D 63 (2001) 041501, arXiv:gr-qc/0009021.
  94. J. D. Christensen, I. Khavkine, E. R. Livine, and S. Speziale, “Sub-leading asymptotic behaviour of area correlations in the Barrett-Crane model,” Class. Quant. Grav. 27 (2010) 035012, arXiv:0908.4476.
  95. J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, F. Hellmann, and R. Pereira, “Lorentzian spin foam amplitudes: Graphical calculus and asymptotics,” Class. Quant. Grav. 27 (2010) 165009, arXiv:0907.2440.
  96. M. Christodoulou, F. D’Ambrosio, and C. Theofilis, “Geometry Transition in Spinfoams,” 2, 2023. arXiv:2302.12622.
  97. M. Han, H. Liu, D. Qu, F. Vidotto, and C. Zhang, “Cosmological Dynamics from Covariant Loop Quantum Gravity with Scalar Matter,” arXiv:2402.07984.
  98. A. Banburski, L.-Q. Chen, L. Freidel, and J. Hnybida, “Pachner moves in a 4d Riemannian holomorphic Spin Foam model,” Phys. Rev. D 92 (2015), no. 12, 124014, arXiv:1412.8247.
  99. C. Rovelli, “Graviton propagator from background-independent quantum gravity,” Phys. Rev. Lett. 97 (2006) 151301, arXiv:gr-qc/0508124.
  100. E. R. Livine, S. Speziale, and J. L. Willis, “Towards the graviton from spinfoams: Higher order corrections in the 3-D toy model,” Phys. Rev. D 75 (2007) 024038, arXiv:gr-qc/0605123.
  101. E. Alesci, E. Bianchi, and C. Rovelli, “LQG propagator: III. The New vertex,” Class. Quant. Grav. 26 (2009) 215001, arXiv:0812.5018.
  102. C. Rovelli and F. Vidotto, “Stepping out of Homogeneity in Loop Quantum Cosmology,” Class. Quant. Grav. 25 (2008) 225024, arXiv:0805.4585.
  103. E. R. Livine and M. Martin-Benito, “Classical Setting and Effective Dynamics for Spinfoam Cosmology,” Class. Quant. Grav. 30 (2013) 035006, arXiv:1111.2867.
  104. F. Gozzini and F. Vidotto, “Primordial Fluctuations From Quantum Gravity,” Front. Astron. Astrophys. Cosmol. 7 (2021) 629466, arXiv:1906.02211.
  105. B. Dittrich and S. Steinhaus, “Time evolution as refining, coarse graining and entangling,” New J. Phys. 16 (2014) 123041, arXiv:1311.7565.
  106. B. Bahr and S. Steinhaus, “Numerical evidence for a phase transition in 4d spin foam quantum gravity,” Phys. Rev. Lett. 117 (2016), no. 14, 141302, arXiv:1605.07649.
  107. S. Steinhaus, “Coarse Graining Spin Foam Quantum Gravity—A Review,” Front. in Phys. 8 (2020) 295, arXiv:2007.01315.
  108. S. K. Asante, B. Dittrich, F. Girelli, A. Riello, and P. Tsimiklis, “Quantum geometry from higher gauge theory,” Class. Quant. Grav. 37 (2020), no. 20, 205001, arXiv:1908.05970.
  109. V. Rivasseau, “Quantum Gravity and Renormalization: The Tensor Track,” AIP Conf. Proc. 1444 (2012), no. 1, 18–29, arXiv:1112.5104.
  110. R. Gurau, “A review of the large N limit of tensor models,” arXiv:1209.4295.
  111. D. Oriti, L. Sindoni, and E. Wilson-Ewing, “Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates,” Class. Quant. Grav. 33 (2016), no. 22, 224001, arXiv:1602.05881.
  112. L. Marchetti, D. Oriti, A. G. A. Pithis, and J. Thürigen, “Mean-Field Phase Transitions in Tensorial Group Field Theory Quantum Gravity,” Phys. Rev. Lett. 130 (2023), no. 14, 141501, arXiv:2211.12768.
  113. S. K. Asante, B. Dittrich, and J. Padua-Arguelles, “Effective spin foam models for Lorentzian quantum gravity,” Class. Quant. Grav. 38 (2021), no. 19, 195002, arXiv:2104.00485.
  114. S. K. Asante, B. Dittrich, and S. Steinhaus, “Spin foams, Refinement limit and Renormalization,” arXiv:2211.09578.
  115. B. Dittrich and A. Kogios, “From spin foams to area metric dynamics to gravitons,” Class. Quant. Grav. 40 (2023), no. 9, 095011, arXiv:2203.02409.
  116. M. Han, H. Liu, and D. Qu, “Complex critical points in Lorentzian spinfoam quantum gravity: Four-simplex amplitude and effective dynamics on a double-ΔΔ\Deltaroman_Δ3 complex,” Phys. Rev. D 108 (2023), no. 2, 026010, arXiv:2301.02930.
  117. F. Gozzini, Spin foam models of quantum gravity : advances through new techniques and numerical codes. PhD thesis, Aix-Marseille U., 2021.
  118. P. Dona and P. Frisoni, “How-to Compute EPRL Spin Foam Amplitudes,” Universe 8 (2022), no. 4, 208, arXiv:2202.04360.
  119. Springer Nature Singapore, Singapore, 2023. arXiv:2212.14396.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 16 likes.