Papers
Topics
Authors
Recent
Search
2000 character limit reached

Perspective-Equivariance for Unsupervised Imaging with Camera Geometry

Published 14 Mar 2024 in cs.CV and eess.IV | (2403.09327v2)

Abstract: Ill-posed image reconstruction problems appear in many scenarios such as remote sensing, where obtaining high quality images is crucial for environmental monitoring, disaster management and urban planning. Deep learning has seen great success in overcoming the limitations of traditional methods. However, these inverse problems rarely come with ground truth data, highlighting the importance of unsupervised learning from partial and noisy measurements alone. We propose perspective-equivariant imaging (EI), a framework that leverages classical projective camera geometry in optical imaging systems, such as satellites or handheld cameras, to recover information lost in ill-posed camera imaging problems. We show that our much richer non-linear class of group transforms, derived from camera geometry, generalises previous EI work and is an excellent prior for satellite and urban image data. Perspective-EI achieves state-of-the-art results in multispectral pansharpening, outperforming other unsupervised methods in the literature. Code at https://github.com/Andrewwango/perspective-equivariant-imaging.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.