$2$-Periodic complexes over regular local rings (2403.09149v1)
Abstract: Let $(A,\mathfrak{m})$ be a regular local ring of dimension $d \geq 1$. Let $\mathcal{D}2_{fg}(A)$ denote the derived category of $2$-periodic complexes with finitely generated cohomology modules. Let $\mathcal{K}2(\proj A) $ denote the homotopy category of $2$-periodic complexes of finitely generated free $A$-modules. We show the natural map $\mathcal{K}2(\ proj \ A) \longrightarrow \mathcal{D}2(A)$ is an equivalence of categories. When $A$ is complete we show that $\mathcal{K}2_f(\ proj \ A)$ ($2$-periodic complexes with finite length cohomology) is Krull-Schmidt with Auslander-Reiten (AR) triangles. We also compute the AR-quiver of $\mathcal{K}2_f(\ proj \ A)$ when $\ dim \ A = 1$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.