Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Many-Body Scars for Arbitrary Integer Spin in 2+1D Abelian Gauge Theories (2403.08892v3)

Published 13 Mar 2024 in hep-lat, cond-mat.quant-gas, cond-mat.str-el, and quant-ph

Abstract: The existence of Quantum Many-Body Scars, which prevents thermalization from certain initial states after a long time, has been established across different quantum many-body systems. These include gauge theories corresponding to spin-1/2 quantum link models. Establishing quantum scars in gauge theories with high spin is not accessible with existing numerical methods, which rely on exact diagonalization. We systematically identify scars for pure gauge theories with arbitrarily large integer spin $S$ in $2+1$D, where the electric field is restricted to $2S+1$ states per link. Through an explicit analytic construction, we show that the presence of scars is widespread in $2+1$D gauge theories for arbitrary integer spin. We confirm these findings numerically for small truncated spin and $S=1$ quantum link models. Our analytic construction establishes the presence of scars far beyond volumes and spins that can be probed with existing numerical methods and can guide quantum simulation experiments toward interesting non-equilibrium phenomena, inaccessible otherwise.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (27)
  1. J. M. Deutsch, Quantum statistical mechanics in a closed system, Physical review a 43, 2046 (1991).
  2. M. Srednicki, Chaos and quantum thermalization, Physical review e 50, 888 (1994).
  3. M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008).
  4. J. M. Deutsch, Eigenstate thermalization hypothesis, Reports on Progress in Physics 81, 082001 (2018).
  5. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nature Physics 17, 675 (2021).
  6. S. Moudgalya, B. A. Bernevig, and N. Regnault, Quantum many-body scars and hilbert space fragmentation: a review of exact results, Reports on Progress in Physics 85, 086501 (2022).
  7. V. Khemani, C. R. Laumann, and A. Chandran, Signatures of integrability in the dynamics of rydberg-blockaded chains, Physical Review B 99, 161101 (2019).
  8. M. Schecter and T. Iadecola, Weak ergodicity breaking and quantum many-body scars in spin-1 x y magnets, Physical review letters 123, 147201 (2019).
  9. D. K. Mark and O. I. Motrunich, η𝜂\etaitalic_η-pairing states as true scars in an extended hubbard model, Physical Review B 102, 075132 (2020).
  10. D. K. Mark, C.-J. Lin, and O. I. Motrunich, Unified structure for exact towers of scar states in the affleck-kennedy-lieb-tasaki and other models, Physical Review B 101, 195131 (2020).
  11. D. Banerjee and A. Sen, Quantum scars from zero modes in an abelian lattice gauge theory on ladders, Physical Review Letters 126, 220601 (2021).
  12. S. Biswas, D. Banerjee, and A. Sen, Scars from protected zero modes and beyond in u⁢(1)𝑢1u(1)italic_u ( 1 ) quantum link and quantum dimer models, SciPost Physics 12, 148 (2022).
  13. T. Hayata and Y. Hidaka, String-net formulation of hamiltonian lattice yang-mills theories and quantum many-body scars in a nonabelian gauge theory, arXiv preprint arXiv:2305.05950  (2023).
  14. M. Troyer and U.-J. Wiese, Computational complexity and fundamental limitations to fermionic quantum monte carlo simulations, Physical review letters 94, 170201 (2005).
  15. U.-J. Wiese, Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories, Annalen der Physik 525, 777 (2013).
  16. M. Dalmonte and S. Montangero, Lattice gauge theory simulations in the quantum information era, Contemporary Physics 57, 388 (2016).
  17. E. Zohar, Quantum simulation of lattice gauge theories in more than one space dimension—requirements, challenges and methods, Philosophical Transactions of the Royal Society A 380, 20210069 (2022).
  18. J. C. Halimeh and P. Hauke, Stabilizing gauge theories in quantum simulators: a brief review, arXiv preprint arXiv:2204.13709  (2022).
  19. R. Brower, S. Chandrasekharan, and U.-J. Wiese, Qcd as a quantum link model, Physical Review D 60, 094502 (1999).
  20. S. Chandrasekharan and U.-J. Wiese, Quantum link models: A discrete approach to gauge theories, Nuclear Physics B 492, 455 (1997).
  21. U.-J. Wiese, From quantum link models to d-theory: a resource efficient framework for the quantum simulation and computation of gauge theories, Philosophical Transactions of the Royal Society A 380, 20210068 (2022).
  22. See supplementary material at.
  23. D. Horn, Finite matrix models with continuous local gauge invariance, Physics Letters B 100, 149 (1981).
  24. P. Orland and D. Rohrlich, Lattice gauge magnets: Local isospin from spin, Nuclear Physics B 338, 647 (1990).
  25. M. Schecter and T. Iadecola, Many-body spectral reflection symmetry and protected infinite-temperature degeneracy, Physical Review B 98, 035139 (2018).
  26. V. Karle, M. Serbyn, and A. A. Michailidis, Area-law entangled eigenstates from nullspaces of local hamiltonians, Physical Review Letters 127, 060602 (2021).
  27. J. Osborne, I. P. McCulloch, and J. C. Halimeh, Quantum many-body scarring in 2+1d gauge theories with dynamical matter (2024), to appear in the same arXiv listing.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.