Exploring global symmetry-breaking superradiant phase via phase competition (2403.08602v1)
Abstract: Superradiant phase transitions play a fundamental role in understanding the mechanism of collective light-matter interaction at the quantum level. Here we investigate multiple superradiant phases and phase transitions with different symmetry-breaking patterns in a two-mode V-type Dicke model. Interestingly, we show that there exists a quadruple point where one normal phase, one global symmetry-breaking superradiant phase and two local symmetry-breaking superradiant phases meet. Such a global phase results from the phase competition between two local superradiant phases and can not occur in the standard $\Lambda$- and $\Xi$-type three-level configurations in quantum optics. Moreover, we exhibit a sequential first-order quantum phase transition from one local to the global again to the other local superradiant phase. Our study opens up a perspective of exploring multi-level quantum critical phenomena with global symmetry breaking.
- R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).
- K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: The Dicke maser model,” Ann. Phys. (N.Y.) 76, 360–404 (1973).
- Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).
- C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: The Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).
- C. Emary and T. Brandes, “Chaos and the quantum phase transition in the Dicke model,” Phys. Rev. E 67, 066203 (2003).
- N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).
- L. P. Yang and Z. Jacob, “Quantum critical detector: amplifying weak signals using discontinuous quantum phase transitions,” Opt. Express 27, 10482–10494 (2019).
- L. P. Yang and Z. Jacob, “Engineering first-order quantum phase transitions for weak signal detection,” J. Appl. Phys. 126, 174502 (2019).
- Q. Liu and J. T. Shen, “Photonic Fock state generation using superradiance,” Opt. Lett. 47, 4576–4579 (2022).
- A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” Rev. Mod. Phys. 87, 1379–1418 (2015).
- J. Q. You and F. Nori, “Atomic physics and quantum optics using superconducting circuits,” Nature (London) 474, 589–597 (2011).
- A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, “Circuit quantum electrodynamics,” Rev. Mod. Phys. 93, 025005 (2021).
- P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010).
- O. Viehmann, J. von Delft, and F. Marquardt, “Superradiant phase transitions and the standard description of circuit QED,” Phys. Rev. Lett. 107, 113602 (2011).
- V. M. Bastidas, C. Emary, B. Regler, and T. Brandes, “Nonequilibrium quantum phase transitions in the Dicke model,” Phys. Rev. Lett. 108, 043003 (2012).
- W. Buijsman, V. Gritsev, and R. Sprik, “Nonergodicity in the anisotropic Dicke model,” Phys. Rev. Lett. 118, 080601 (2017).
- X. Y. Lü, L. L. Zheng, G. L. Zhu, and Y. Wu, “Single-photon-triggered quantum phase transition,” Phys. Rev. Appl. 9, 064006 (2018).
- K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature (London) 464, 1301–1306 (2010).
- Z. Zhiqiang, C. H. Lee, R. Kumar, K. J. Arnold, S. J. Masson, A. S. Parkins, and M. D. Barrett, “Nonequilibrium phase transition in a spin-1 Dicke model,” Optica 4, 424–429 (2017).
- A. Safavi-Naini, R. J. Lewis-Swan, J. G. Bohnet, M. Gärttner, K. A. Gilmore, J. E. Jordan, J. Cohn, J. K. Freericks, A. M. Rey, and J. J. Bollinger, “Verification of a many-ion simulator of the Dicke model through slow quenches across a phase transition,” Phys. Rev. Lett. 121, 040503 (2018).
- X. Zhang, Y. Chen, Z. Wu, J. Wang, J. Fan, S. Deng, and H. Wu, “Observation of a superradiant quantum phase transition in an intracavity degenerate Fermi gas,” Science 373, 1359–1362 (2021).
- G. Ferioli, A. Glicenstein, I. Ferrier-Barbut, and A. Browaeys, “A non-equilibrium superradiant phase transition in free space,” Nat. Phys. 19, 1345–1349 (2023).
- S. Cardenas-Lopez, S. J. Masson, Z. Zager, and A. Asenjo-Garcia, “Many-body superradiance and dynamical mirror symmetry breaking in waveguide QED,” Phys. Rev. Lett. 131, 033605 (2023).
- C. Liedl, F. Tebbenjohanns, C. Bach, S. Pucher, A. Rauschenbeutel, and P. Schneeweiss, “Observation of Superradiant Bursts in a Cascaded Quantum System,” Phys. Rev. X 14, 011020 (2024).
- M. Hayn, C. Emary, and T. Brandes, “Phase transitions and dark-state physics in two-color superradiance,” Phys. Rev. A 84, 053856 (2011).
- C. Ciuti and P. Nataf, “Comment on “superradiant phase transitions and the standard description of circuit QED”,” Phys. Rev. Lett. 109, 179301 (2012).
- A. Baksic, P. Nataf, and C. Ciuti, “Superradiant phase transitions with three-level systems,” Phys. Rev. A 87, 023813 (2013).
- M. Hayn and T. Brandes, “Thermodynamics and superradiant phase transitions in a three-level Dicke model,” Phys. Rev. E 95, 012153 (2017).
- J. Skulte, P. Kongkhambut, H. Keßler, A. Hemmerich, L. Mathey, and J. G. Cosme, “Parametrically driven dissipative three-level Dicke model,” Phys. Rev. A 104, 063705 (2021).
- P. Kongkhambut, H. Keßler, J. Skulte, L. Mathey, J. G. Cosme, and A. Hemmerich, “Realization of a periodically driven open three-level Dicke model,” Phys. Rev. Lett. 127, 253601 (2021).
- R. Lin, R. Rosa-Medina, F. Ferri, F. Finger, K. Kroeger, T. Donner, T. Esslinger, and R. Chitra, “Dissipation-engineered family of nearly dark states in many-body cavity-atom systems,” Phys. Rev. Lett. 128, 153601 (2022).
- J. Fan and S. Jia, “Collective dynamics of the unbalanced three-level Dicke model,” Phys. Rev. A 107, 033711 (2023).
- A. Baksic and C. Ciuti, “Controlling discrete and continuous symmetries in “superradiant” phase transitions with circuit QED systems,” Phys. Rev. Lett. 112, 173601 (2014).
- Z. Kurucz and K. Mølmer, “Multilevel Holstein-Primakoff approximation and its application to atomic spin squeezing and ensemble quantum memories,” Phys. Rev. A 81, 032314 (2010).
- S. Felicetti and A. Le Boité, “Universal spectral features of ultrastrongly coupled systems,” Phys. Rev. Lett. 124, 040404 (2020).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.