Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Centrality of star and monotone factorisations (2403.08354v1)

Published 13 Mar 2024 in math.CO

Abstract: A factorisation problem in the symmetric group is central if any two permutations in the same conjugacy class have the same number of factorisations. We give the first fully combinatorial proof of the centrality of transitive star factorisations that is valid in all genera, which answers a natural question of Goulden and Jackson from 2009. Our proof is through a bijection to a class of monotone double Hurwitz factorisations. These latter factorisations are also not obviously central, so we also give a combinatorial proof of their centrality. As a corollary we obtain new formulae for some monotone double Hurwitz numbers, and a new relation between Hurwitz and monotone Hurwitz numbers. We also generalise a theorem of Goulden and Jackson from 2009 that states that the transitive power of Jucys-Murphy elements are central. Our theorem states that the transitive image of any symmetric function evaluated at Jucys-Murphy elements is central, which gives a transitive version of Jucys' original result from 1974.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.