A new theory bridging non-relativistic and QED-based path integrals unveils more than quantum mechanics (2403.07941v1)
Abstract: The Feynman path integral plays a crucial role in quantum mechanics, offering significant insights into the interaction between classical action and propagators, and linking quantum electrodynamics (QED) with Feynman diagrams. However, the formulations of path integrals in classical quantum mechanics and QED are neither unified nor interconnected, suggesting the potential existence of an important bridging theory that could be key to solving existing puzzles in quantum mechanics. In this work, we delve into the theoretical consistency, completeness, and integration with established path integral theories, revealing this concealed path integral form. This newly uncovered form not only connects various path integral approaches but also demonstrates its potential in explaining quantum phenomena like the origin of spin and quantum nonlocal correlations. It transcends conventional quantum mechanics, proposing a more profound and fundamental physical principle.
- R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948).
- K. Wharton, “The universe is not a computer,” in Questioning the Foundations of Physics: Which of Our Fundamental Assumptions Are Wrong?, edited by A. Aguirre, B. Foster, and Z. Merali (Springer International Publishing, Cham, 2015) pp. 177–189.
- A. Barut and I. Duru, Physics Reports 172, 1 (1989).
- C. Kiefer, Phys. Rev. D 45, 2044 (1992).
- A. Barvinsky, Nuclear Physics B 520, 533 (1998).
- E. Seidewitz, Journal of mathematical physics 47 (2006).
- T. Johnson-Freyd, Letters in Mathematical Physics 94, 123 (2010).
- G. N. Ord and J. A. Gualtieri, Phys. Rev. Lett. 89, 250403 (2002).
- A. Kull, Physics Letters A 303, 147 (2002).
- A. Kull and R. A. Treumann, International Journal of Theoretical Physics 38, 1423 (1999).
- M. E. Peskin, An introduction to quantum field theory (CRC press, 2018).
- M. Henneaux and C. Teitelboim, Annals of Physics 143, 127 (1982).
- T. Jacobson and L. S. Schulman, Journal of Physics A: Mathematical and General 17, 375 (1984).
- G. N. Ord, Journal of Statistical Physics 66, 647 (1992).
- I. Bialynicki-Birula, Physical Review D 49, 6920 (1994).
- D. A. Meyer, Journal of Statistical Physics 85, 551 (1996).
- G. Ord and D. Mckeon, Annals of Physics 222, 244 (1993).
- M. A. Earle, Journal of Physics A: Mathematical and General 29, 3837 (1996).
- B. Gaveau and R. Quezada, Journal of Mathematical Physics 34, 2102 (1993).
- B. Gaveau and R. Quezada, Journal of Mathematical Physics 35, 3054 (1994).
- G. F. Angelantonj and R. Soldati, Physics Letters B 435, 91 (1998).
- E. S. Fradkin and D. M. Gitman, Physical Review D 41, 633 (1990).
- and, Communications in Theoretical Physics 57, 967 (2012).
- L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1981).
- J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics (Cambridge University Press, Cambridge, 2017).
- P. A. M. Dirac, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical 117, 610 (1927).
- M. Tinkham, Group theory and quantum mechanics. Courier Corporation (Courier Corporation, 2003).
- D. Hestenes, Space-Time Algebra (Switzerland: Springer International Publishing, 2015).
- P. Lounesto, “Clifford algebras and spinors,” in Clifford Algebras and Their Applications in Mathematical Physics, edited by J. S. R. Chisholm and A. K. Common (Springer Netherlands, Dordrecht, 1986) pp. 25–37.
- W. Wen, arXiv preprint arXiv: 2306.01026 (2023).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.