Higher Witt Groups for 2-Categories I: Centralizers (2403.07768v2)
Abstract: In this article, we investigate monoidal, braided, sylleptic centralizers of monoidal, braided, sylleptic 2-functors. We specifically focus on multifusion 2-categories and show that monoidal, braided, sylleptic centralizers are multifusion again, via studying the corresponding enveloping algebras. We provide a characterization of the non-degeneracy condition for monoidal, braided, and sylleptic fusion 2-categories, via vanishing of their centers. Applying Double Centralizer Theorems, we establish the relationship between monoidal, braided, symmetric local modules and free modules. In particular, we obtain factorization properties of non-degenerate monoidal, braided, and sylleptic fusion 2-categories. Main results in this article will be used to study higher Witt equivalences of non-degenerate monoidal, braided, sylleptic 2-categories in the sequential articles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.