Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tight error bounds for log-determinant cones without constraint qualifications (2403.07295v2)

Published 12 Mar 2024 in math.OC, cs.NA, and math.NA

Abstract: In this paper, without requiring any constraint qualifications, we establish tight error bounds for the log-determinant cone, which is the closure of the hypograph of the perspective function of the log-determinant function. This error bound is obtained using the recently developed framework based on one-step facial residual functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimization Methods and Software, 23(1):5–19, 2008.
  2. C. L. Atwood. Optimal and efficient designs of experiments. Annals of Mathematical Statistics, 40:1570–1602, 1969.
  3. G. P. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific Journal of Mathematics, 57(1):15 – 32, 1975.
  4. Kernel-matrix determinant estimates from stopped Cholesky decomposition. Journal of Machine Learning Research, 24:71:1–71:57, 2023.
  5. On projection algorithms for solving convex feasibility problems. SIAM Review, 38(3):367–426, 1996.
  6. Strong conical hull intersection property, bounded linear regularity, Jameson’s property (G), and error bounds in convex optimization. Mathematical Programming, 86(1):135–160, Sep 1999.
  7. J. M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. Journal of Mathematical Analysis and Applications, 83(2):495 – 530, 1981.
  8. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.
  9. Solving natural conic formulations with Hypatia.jl. INFORMS Journal on Computing, 34:2686–2699, 2022.
  10. Conic optimization with spectral functions on Euclidean Jordan algebras. Mathematics of Operations Research, 48(4):1906–1933, 2023.
  11. Performance enhancements for a generic conic interior point algorithm. Mathematical Programming Computation, 15(1):53–101, 2023.
  12. First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications, 30(1):56–66, 2008.
  13. A. P. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.
  14. J. Faraut and A. Korányi. Analysis on Symmetric Cones. Clarendon Press, Oxford, 1994.
  15. L. Faybusovich. Several Jordan-algebraic aspects of optimization. Optimization, 57(3):379–393, 2008.
  16. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.
  17. D. Henrion and J. Malick. Projection methods for conic feasibility problems: applications to polynomial sum-of-squares decompositions. Optimization Methods and Software, 26(1):23–46, 2011.
  18. A. J. Hoffman. On approximate solutions of systems of linear inequalities. Journal of Research of the National Bureau of Standards, 49(4):263–265, 1952.
  19. Matrix Analysis. Cambridge University Press, Cambridge, 1990.
  20. A. Kulesza and B. Taskar. Determinantal point processes for machine learning. Foundations and Trend® in Machine Learning, 5(2-3):123–286, 2012.
  21. Error bounds for convex inequality systems. In Generalized Convexity, Generalized Monotonicity: Recent Results, pages 75–110. Springer, US, 1998.
  22. Generalized power cones: optimal error bounds and automorphisms. ArXiv e-prints. To appear at the SIAM Journal on Optimization, 2023. arXiv:2211.16142.
  23. Error bounds, facial residual functions and applications to the exponential cone. Mathematical Programming, 200:229–278, 2023.
  24. Optimal error bounds in the absence of constraint qualifications with applications to the p𝑝pitalic_p-cones and beyond. arXiv preprint, 2021. arXiv:2109.11729.
  25. T. Liu and B. F. Lourenço. Convergence analysis under consistent error bounds. Foundations of Computational Mathematics, pages 1–51, 2022.
  26. B. F. Lourenço. Amenable cones: error bounds without constraint qualifications. Mathematical Programming, 186:1–48, 2021.
  27. Facial reduction and partial polyhedrality. SIAM Journal on Optimization, 28(3):2304–2326, 2018.
  28. Amenable cones are particularly nice. SIAM Journal on Optimization, 32(3):2347–2375, 2022.
  29. Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods: a general approach. Annals of Operations Research, 46(1):157–178, 1993.
  30. MOSEK ApS. MOSEK Modeling Cookbook Release 3.3.0, 2022. URL: https://docs.mosek.com/modeling-cookbook/index.html.
  31. Y. Nesterov and A. Nemirovskii. Interior-point Polynomial Algorithms in Convex Programming. SIAM, Philadelphia, 1994.
  32. J.-S. Pang. Error bounds in mathematical programming. Mathematical Programming, 79(1):299–332, 1997.
  33. G. Pataki. Strong duality in conic linear programming: Facial reduction and extended duals. In Computational and Analytical Mathematics, volume 50, pages 613–634. Springer, New York, 2013.
  34. Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA, 2005.
  35. R. T. Rockafellar. Convex Analysis. Princeton University Press, New Jersey, 1997.
  36. H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman and Hall/CRC, New York, 2005.
  37. J. F. Sturm. Error bounds for linear matrix inequalities. SIAM Journal on Optimization, 10(4):1228–1248, 2000.
  38. M. J. Todd. Minimum-volume Ellipsoids: Theory and Algorithms. SIAM, Philadelphia, 2016.
  39. S. Van Aelst and P. Rousseeuw. Minimum volume ellipsoid. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1):71–82, 2009.
  40. H. Waki and M. Muramatsu. Facial reduction algorithms for conic optimization problems. Journal of Optimization Theory and Applications, 158(1):188–215, 2013.
  41. Fused multiple graphical lasso. SIAM Journal on Optimization, 25(2):916–943, 2015.
  42. An efficient linearly convergent regularized proximal point algorithm for fused multiple graphical Lasso problems. SIAM Journal on Mathematics of Data Science, 3(2):524–543, 2021.
  43. Z. Zhou and A. M.-C. So. A unified approach to error bounds for structured convex optimization problems. Mathematical Programming, 165(2):689–728, Oct 2017.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.