Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Integrable systems and cluster algebras (2403.07287v1)

Published 12 Mar 2024 in nlin.SI, math-ph, math.CO, and math.MP

Abstract: We review several constructions of integrable systems with an underlying cluster algebra structure, in particular the Gekhtman-Shapiro-Tabachnikov-Vainshtein construction based on perfect networks and the Goncharov-Kenyon approach based on the dimer model. We also discuss results of Galashin and Pylyavskyy on integrability of T-systems.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (54)
  1. Vector-relation configurations and plabic graphs. Selecta Math., 30(1):9, 2024.
  2. Noncommutative networks on a cylinder. arXiv:2008.02889, 2020.
  3. Algebraic entropy. Comm. Math. Phys., 204:425–437, 1999.
  4. Cluster integrable systems, q-Painlevé equations and their quantization. J. High Energy Phys., 2018(2), 2018.
  5. L. Chekhov and M. Shapiro. Darboux coordinates for symplectic groupoid and cluster algebras. arXiv:2003.07499, 2020.
  6. P. Di Francesco and R. Kedem. Q𝑄Qitalic_Q-systems, heaps, paths and cluster positivity. Comm. Math. Phys., 293(3):727–802, 2010.
  7. Hamiltonian methods in the theory of solitons. Springer, 1987.
  8. R. Felipe and G. Marí Beffa. The pentagram map on Grassmannians. Ann. Inst. Fourier, 69(1):421–456, 2019.
  9. V. Fock and A. Goncharov. Cluster ensembles, quantization and the dilogarithm. Ann. Sci. Éc. Norm. Supér., 42(6):865–930, 2009.
  10. V.V. Fock and A. Marshakov. Loop groups, clusters, dimers and integrable systems. In Geometry and quantization of moduli spaces, pages 1–65. Springer, 2016.
  11. Introduction to cluster algebras. arXiv:1608.05735, arXiv:1707.07190, arXiv:2008.09189,arXiv:2106.02160.
  12. S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.
  13. S. Fomin and A. Zelevinsky. Cluster algebras IV: Coefficients. Comp. Math., 143:112–164, 2007.
  14. A. Fordy and A. Hone. Discrete integrable systems and Poisson algebras from cluster maps. Comm. Math. Phys., 325:527–584, 2014.
  15. A. Fordy and R.J. Marsh. Cluster mutation-periodic quivers and associated Laurent sequences. J. Algebraic Combin., 34:19–66, 2011.
  16. P. Galashin and P. Pylyavskyy. The classification of Zamolodchikov periodic quivers. Amer. J. Math., 141(2):447–484, 2019.
  17. P. Galashin and P. Pylyavskyy. Quivers with additive labelings: classification and algebraic entropy. Doc. Math., 24:2057–2135, 2019.
  18. P. Galashin and P. Pylyavskyy. Quivers with subadditive labelings: classification and integrability. Math. Z., 295(3-4):945–992, 2020.
  19. Integrable cluster dynamics of directed networks and pentagram maps. Adv. Math., 300:390–450, 2016.
  20. Cluster algebras and Poisson geometry. Mosc. Math. J., 3(3):899–934, 2003.
  21. Poisson geometry of directed networks in a disk. Selecta Math., 15(1):61–103, 2009.
  22. Cluster algebras and Poisson geometry. Amer. Math. Soc., 2010.
  23. Generalized Bäcklund-Darboux transformations for Coxeter-Toda flows from a cluster algebra perspective. Acta Math., 206(2):245–310, 2011.
  24. Poisson geometry of directed networks in an annulus. J. Eur. Math. Soc., 14(2):541–570, 2012.
  25. T. George and G. Inchiostro. The cluster modular group of the dimer model. Ann. Inst. Henri Poincaré D, 11(1), 2024.
  26. T. George and S. Ramassamy. Discrete dynamics in cluster integrable systems from geometric R𝑅Ritalic_R-matrix transformations. Comb. Th., 3(2), 2023.
  27. M. Glick. The pentagram map and Y-patterns. Adv. Math., 227(2):1019–1045, 2011.
  28. M. Glick and P. Pylyavskyy. Y-meshes and generalized pentagram maps. Proc. Lond. Math. Soc., 112(4):753–797, 2016.
  29. A.B. Goncharov and R. Kenyon. Dimers and cluster integrable systems. Ann. Sci. Éc. Norm. Supér., 46(5):747–813, 2013.
  30. A. Hone and R. Inoue. Discrete Painlevé equations from Y-systems. J. Phys. A, 47(47):474007, 2014.
  31. Periodicities of T-systems and Y-systems, dilogarithm identities, and cluster algebras I: type Brsubscript𝐵𝑟B_{r}italic_B start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT. Publ. Res. Inst. Math. Sci., 49(1):1–42, 2013.
  32. A. Izosimov. Dimers, networks, and cluster integrable systems. Geom. Funct. Anal., 32(4):861–880, 2022.
  33. A. Izosimov. Pentagram maps and refactorization in Poisson-Lie groups. Adv. Math., 404:108476, 2022.
  34. R. Kedem. Q𝑄Qitalic_Q-systems as cluster algebras. J. Phys. A, 41(19):194011, 14, 2008.
  35. B. Khesin and F. Soloviev. Integrability of higher pentagram maps. Math. Ann., 357(3):1005–1047, 2013.
  36. B. Khesin and F. Soloviev. The geometry of dented pentagram maps. J. Eur. Math. Soc., 18(1):147–179, 2015.
  37. Y. Kodama and L. Williams. KP solitons, total positivity, and cluster algebras. Proc. Natl. Acad. Sci. USA, 108(22):8984–8989, 2011.
  38. Y. Kodama and L. Williams. KP solitons and total positivity for the Grassmannian. Invent. Math., 198:637–699, 2014.
  39. B.R. Marsh. Lecture notes on cluster algebras. Zurich lectures in Advanced Mathematics, 2014.
  40. T. Nakanishi. Periodicities in cluster algebras and dilogarithm identities. In Representations of algebras and related topics, EMS Series of Congress Reports. European Mathematical Society, 2011.
  41. T. Nakanishi. Cluster algebras and scattering diagrams, volume 41 of MSJ Memoirs. 2023.
  42. N. Okubo. Discrete integrable systems and cluster algebras. RIMS Kôkyûroku Bessatsu, B41:25–42, 2013.
  43. N. Okubo and T. Suzuki. Generalized q-Painlevé VI systems of type (A2⁢n+1+A1+A1)(1)superscriptsubscript𝐴2𝑛1subscript𝐴1subscript𝐴11(A_{2n+1}+A_{1}+A_{1})^{(1)}( italic_A start_POSTSUBSCRIPT 2 italic_n + 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT ( 1 ) end_POSTSUPERSCRIPT arising from cluster algebra. Int. Math. Res. Not., 2022(9):6561–6607, 2022.
  44. N. Ovenhouse. Non-commutative integrability of the Grassmann pentagram map. Adv. Math., 373:107309, 2020.
  45. The pentagram map: a discrete integrable system. Comm. Math. Phys., 299(2):409–446, 2010.
  46. Liouville -Arnold integrability of the pentagram map on closed polygons. Duke Math. J., 162(12):2149–2198, 2013.
  47. A. Postnikov. Total positivity, Grassmannians, and networks. arXiv:math/0609764, 2006.
  48. G. Schrader and A. Shapiro. Continuous tensor categories from quantum groups I: algebraic aspects. arXiv:1708.08107, 2017.
  49. R. Schwartz. The pentagram map. Exp. Math., 1(1):71–81, 1992.
  50. M. Semenov-Tian-Shansky. Integrable systems: The r-matrix approach. RIMS-1650. Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan, 2008.
  51. F. Soloviev. Integrability of the pentagram map. Duke Math. J., 162(15):2815–2853, 2013.
  52. M. Van den Bergh. Double Poisson algebras. Trans. Amer. Math. Soc., 360(11):5711–5769, 2008.
  53. P. Vanhaecke. Integrable systems in the realm of algebraic geometry, 2nd edition. Springer Lecture Notes in Mathematics, 1638, 2001.
  54. H. Williams. Double Bruhat cells in Kac-Moody groups and integrable systems. Lett. Math. Phys., 103(4):389–419, 2013.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.